These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
221 related items for PubMed ID: 17270210
1. Molecular and functional dissection of a putative RNA-binding region in yeast mitochondrial leucyl-tRNA synthetase. Nawaz MH, Pang YL, Martinis SA. J Mol Biol; 2007 Mar 23; 367(2):384-94. PubMed ID: 17270210 [Abstract] [Full Text] [Related]
3. A Flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in leucyl-tRNA synthetases. Hsu JL, Martinis SA. J Mol Biol; 2008 Feb 15; 376(2):482-91. PubMed ID: 18155724 [Abstract] [Full Text] [Related]
4. A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase. Zhou XL, Yao P, Ruan LL, Zhu B, Luo J, Qu LH, Wang ED. Biochemistry; 2009 Feb 17; 48(6):1340-7. PubMed ID: 19170608 [Abstract] [Full Text] [Related]
6. A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity. Tan M, Yan W, Liu RJ, Wang M, Chen X, Zhou XL, Wang ED. Biochem J; 2012 Apr 15; 443(2):477-84. PubMed ID: 22292813 [Abstract] [Full Text] [Related]
7. Two conserved threonines collaborate in the Escherichia coli leucyl-tRNA synthetase amino acid editing mechanism. Zhai Y, Martinis SA. Biochemistry; 2005 Nov 29; 44(47):15437-43. PubMed ID: 16300391 [Abstract] [Full Text] [Related]
8. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition. Fukunaga R, Yokoyama S. Nat Struct Mol Biol; 2005 Oct 29; 12(10):915-22. PubMed ID: 16155584 [Abstract] [Full Text] [Related]
9. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing. Zhou XL, Wang ED. Biochem Biophys Res Commun; 2009 Aug 28; 386(3):510-5. PubMed ID: 19540202 [Abstract] [Full Text] [Related]
10. Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase. Zhai Y, Nawaz MH, Lee KW, Kirkbride E, Briggs JM, Martinis SA. Biochemistry; 2007 Mar 20; 46(11):3331-7. PubMed ID: 17311409 [Abstract] [Full Text] [Related]
12. Two distinct domains of the beta subunit of Aquifex aeolicus leucyl-tRNA synthetase are involved in tRNA binding as revealed by a three-hybrid selection. Zheng YG, Wei H, Ling C, Martin F, Eriani G, Wang ED. Nucleic Acids Res; 2004 Mar 20; 32(11):3294-303. PubMed ID: 15208367 [Abstract] [Full Text] [Related]
17. Peripheral insertion modulates the editing activity of the isolated CP1 domain of leucyl-tRNA synthetase. Liu RJ, Tan M, Du DH, Xu BS, Eriani G, Wang ED. Biochem J; 2011 Dec 01; 440(2):217-27. PubMed ID: 21819379 [Abstract] [Full Text] [Related]
18. Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles. Hsu JL, Rho SB, Vannella KM, Martinis SA. J Biol Chem; 2006 Aug 11; 281(32):23075-82. PubMed ID: 16774921 [Abstract] [Full Text] [Related]
19. A viable amino acid editing activity in the leucyl-tRNA synthetase CP1-splicing domain is not required in the yeast mitochondria. Karkhanis VA, Boniecki MT, Poruri K, Martinis SA. J Biol Chem; 2006 Nov 03; 281(44):33217-25. PubMed ID: 16956879 [Abstract] [Full Text] [Related]
20. Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly. Karanasios E, Simader H, Panayotou G, Suck D, Simos G. J Mol Biol; 2007 Dec 07; 374(4):1077-90. PubMed ID: 17976650 [Abstract] [Full Text] [Related] Page: [Next] [New Search]