These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 17275022
1. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor. Mesentean S, Koppole S, Smith JC, Fischer S. J Mol Biol; 2007 Mar 23; 367(2):591-602. PubMed ID: 17275022 [Abstract] [Full Text] [Related]
3. Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke. Koppole S, Smith JC, Fischer S. J Mol Biol; 2006 Aug 18; 361(3):604-16. PubMed ID: 16859703 [Abstract] [Full Text] [Related]
4. Mutation in the SH1 helix reduces the activation energy of the ATP-induced conformational transition of myosin. Iwai S, Chaen S. Biochem Biophys Res Commun; 2007 May 25; 357(1):325-9. PubMed ID: 17416346 [Abstract] [Full Text] [Related]
6. Molecular dynamics simulations of evolved collective motions of atoms in the myosin motor domain upon perturbation of the ATPase pocket. Kawakubo T, Okada O, Minami T. Biophys Chem; 2005 May 01; 115(1):77-85. PubMed ID: 15848287 [Abstract] [Full Text] [Related]
7. The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling. Conibear PB, Málnási-Csizmadia A, Bagshaw CR. Biochemistry; 2004 Dec 14; 43(49):15404-17. PubMed ID: 15581352 [Abstract] [Full Text] [Related]
8. Dynamic conformational changes due to the ATP hydrolysis in the motor domain of myosin: 10-ns molecular dynamics simulations. Kawakubo T, Okada O, Minami T. Biophys Chem; 2009 Apr 14; 141(1):75-86. PubMed ID: 19176270 [Abstract] [Full Text] [Related]
10. Importance of the converter region for the motility of myosin as revealed by the studies on chimeric Chara myosins. Seki M, Kashiyama T, Hachikubo Y, Ito K, Yamamoto K. J Mol Biol; 2004 Nov 19; 344(2):311-5. PubMed ID: 15522286 [Abstract] [Full Text] [Related]
12. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Suzuki Y, Yasunaga T, Ohkura R, Wakabayashi T, Sutoh K. Nature; 1998 Nov 26; 396(6709):380-3. PubMed ID: 9845076 [Abstract] [Full Text] [Related]
14. Exploration of the conformational space of myosin recovery stroke via molecular dynamics. Woo HJ. Biophys Chem; 2007 Jan 26; 125(1):127-37. PubMed ID: 16889886 [Abstract] [Full Text] [Related]
15. Molecular engineering of a backwards-moving myosin motor. Tsiavaliaris G, Fujita-Becker S, Manstein DJ. Nature; 2004 Feb 05; 427(6974):558-61. PubMed ID: 14765199 [Abstract] [Full Text] [Related]
16. Detection of the swings of the lever arm of a myosin motor by fluorescence resonance energy transfer of green and blue fluorescent proteins. Suzuki Y. Methods; 2000 Dec 05; 22(4):355-63. PubMed ID: 11133241 [Abstract] [Full Text] [Related]
17. A deterministic mechanism producing the loose coupling phenomenon observed in an actomyosin system. Masuda T. Biosystems; 2009 Feb 05; 95(2):104-13. PubMed ID: 18793694 [Abstract] [Full Text] [Related]
18. Transient kinetics and mechanics of myosin's force-generating rotation in muscle: resolution of millisecond rotational transitions in the spin-labeled myosin light-chain domain. LaConte LE, Baker JE, Thomas DD. Biochemistry; 2003 Aug 19; 42(32):9797-803. PubMed ID: 12911323 [Abstract] [Full Text] [Related]
19. Transmission of force and displacement within the myosin molecule. Ohki T, Mikhailenko SV, Morales MF, Onishi H, Mochizuki N. Biochemistry; 2004 Nov 02; 43(43):13707-14. PubMed ID: 15504033 [Abstract] [Full Text] [Related]