These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Peak force, velocity, and power during five and ten maximal rowing ergometer strokes by world class female and male rowers. Hartmann U, Mader A, Wasser K, Klauer I. Int J Sports Med; 1993 Sep; 14 Suppl 1():S42-5. PubMed ID: 8262708 [Abstract] [Full Text] [Related]
3. Determinants of 2,000 m rowing ergometer performance in elite rowers. Ingham SA, Whyte GP, Jones K, Nevill AM. Eur J Appl Physiol; 2002 Dec; 88(3):243-6. PubMed ID: 12458367 [Abstract] [Full Text] [Related]
4. Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. Riechman SE, Zoeller RF, Balasekaran G, Goss FL, Robertson RJ. J Sports Sci; 2002 Sep; 20(9):681-7. PubMed ID: 12200919 [Abstract] [Full Text] [Related]
5. Stroke power consistency and 2000 m rowing performance in varsity rowers. Shimoda M, Fukunaga T, Higuchi M, Kawakami Y. Scand J Med Sci Sports; 2009 Feb; 19(1):83-6. PubMed ID: 18248542 [Abstract] [Full Text] [Related]
6. Force-time characteristics of the rowing stroke and corresponding physiological muscle adaptations. Roth W, Schwanitz P, Pas P, Bauer P. Int J Sports Med; 1993 Sep; 14 Suppl 1():S32-4. PubMed ID: 8262705 [Abstract] [Full Text] [Related]
8. Critical velocity: a predictor of 2000-m rowing ergometer performance in NCAA D1 female collegiate rowers. Kendall KL, Smith AE, Fukuda DH, Dwyer TR, Stout JR. J Sports Sci; 2011 Jun; 29(9):945-50. PubMed ID: 21574097 [Abstract] [Full Text] [Related]
9. Modification of the Wingate anaerobic power test for rowing: optimization of the resistance setting. Mandic S, Quinney HA, Bell GJ. Int J Sports Med; 2004 Aug; 25(6):409-14. PubMed ID: 15346227 [Abstract] [Full Text] [Related]
10. Comparison of treadmill and cycle ergometer measurements of force-velocity relationships and power output. Jaskólska A, Goossens P, Veenstra B, Jaskólski A, Skinner JS. Int J Sports Med; 1999 Apr; 20(3):192-7. PubMed ID: 10333097 [Abstract] [Full Text] [Related]
12. Muscle cross-sectional areas and performance power of limbs and trunk in the rowing motion. Tachibana K, Yashiro K, Miyazaki J, Ikegami Y, Higuchi M. Sports Biomech; 2007 Jan; 6(1):44-58. PubMed ID: 17542177 [Abstract] [Full Text] [Related]
13. Effect of stroke rate on velocity of a rowing shell. Martin TP, Bernfield JS. Med Sci Sports Exerc; 1980 Jan; 12(4):250-6. PubMed ID: 7421474 [Abstract] [Full Text] [Related]
14. Effects of external loading on power output in a squat jump on a force platform: a comparison between strength and power athletes and sedentary individuals. Driss T, Vandewalle H, Quièvre J, Miller C, Monod H. J Sports Sci; 2001 Feb; 19(2):99-105. PubMed ID: 11217015 [Abstract] [Full Text] [Related]
15. The effects of interelectrode distance on electromyographic amplitude and mean power frequency during incremental cycle ergometry. Malek MH, Housh TJ, Coburn JW, Weir JP, Schmidt RJ, Beck TW. J Neurosci Methods; 2006 Mar 15; 151(2):139-47. PubMed ID: 16122806 [Abstract] [Full Text] [Related]
16. Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis. Dorel S, Couturier A, Lacour JR, Vandewalle H, Hautier C, Hug F. Med Sci Sports Exerc; 2010 Jun 15; 42(6):1174-83. PubMed ID: 19997017 [Abstract] [Full Text] [Related]
18. An evaluation of instrumented tank rowing for objective assessment of rowing performance. Henry JC, Clark RR, McCabe RP, Vanderby R. J Sports Sci; 1995 Jun 15; 13(3):199-206. PubMed ID: 7563286 [Abstract] [Full Text] [Related]