These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 17288456

  • 1. Modulation of FXYD interaction with Na,K-ATPase by anionic phospholipids and protein kinase phosphorylation.
    Cornelius F, Mahmmoud YA.
    Biochemistry; 2007 Mar 06; 46(9):2371-9. PubMed ID: 17288456
    [Abstract] [Full Text] [Related]

  • 2. Functional significance of the shark Na,K-ATPase N-terminal domain. Is the structurally variable N-Terminus involved in tissue-specific regulation by FXYD proteins?
    Cornelius F, Mahmmoud YA, Meischke L, Cramb G.
    Biochemistry; 2005 Oct 04; 44(39):13051-62. PubMed ID: 16185073
    [Abstract] [Full Text] [Related]

  • 3. Interaction of FXYD10 (PLMS) with Na,K-ATPase from shark rectal glands. Close proximity of Cys74 of FXYD10 to Cys254 in the a domain of the alpha-subunit revealed by intermolecular thiol cross-linking.
    Mahmmoud YA, Vorum H, Cornelius F.
    J Biol Chem; 2005 Jul 29; 280(30):27776-82. PubMed ID: 15919665
    [Abstract] [Full Text] [Related]

  • 4. The gamma subunit of Na+, K+-ATPase: role on ATPase activity and regulatory phosphorylation by PKA.
    Cortes VF, Veiga-Lopes FE, Barrabin H, Alves-Ferreira M, Fontes CF.
    Int J Biochem Cell Biol; 2006 Jul 29; 38(11):1901-13. PubMed ID: 16815075
    [Abstract] [Full Text] [Related]

  • 5. Modulation of Na,K-ATPase by phospholipids and cholesterol. II. Steady-state and presteady-state kinetics.
    Cornelius F, Turner N, Christensen HR.
    Biochemistry; 2003 Jul 22; 42(28):8541-9. PubMed ID: 12859201
    [Abstract] [Full Text] [Related]

  • 6. Cholesterol-dependent interaction of polyunsaturated phospholipids with Na,K-ATPase.
    Cornelius F.
    Biochemistry; 2008 Feb 12; 47(6):1652-8. PubMed ID: 18193899
    [Abstract] [Full Text] [Related]

  • 7. Na,K-ATPase reconstituted in liposomes: effects of lipid composition on hydrolytic activity and enzyme orientation.
    de Lima Santos H, Lopes ML, Maggio B, Ciancaglini P.
    Colloids Surf B Biointerfaces; 2005 Apr 10; 41(4):239-48. PubMed ID: 15748819
    [Abstract] [Full Text] [Related]

  • 8. Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation.
    MacDonald JA, Storey KB.
    Biochem Biophys Res Commun; 1999 Jan 19; 254(2):424-9. PubMed ID: 9918854
    [Abstract] [Full Text] [Related]

  • 9. Na+,K+-ATPase: structure, mechanism, and regulation.
    Lopina OD.
    Membr Cell Biol; 2000 Jan 19; 13(6):721-44. PubMed ID: 10963432
    [Abstract] [Full Text] [Related]

  • 10. The influence of SRC-family tyrosine kinases on Na,K-ATPase activity in lens epithelium.
    Bozulic LD, Dean WL, Delamere NA.
    Invest Ophthalmol Vis Sci; 2005 Feb 19; 46(2):618-22. PubMed ID: 15671290
    [Abstract] [Full Text] [Related]

  • 11. E2P phosphoforms of Na,K-ATPase. II. Interaction of substrate and cation-binding sites in Pi phosphorylation of Na,K-ATPase.
    Cornelius F, Fedosova NU, Klodos I.
    Biochemistry; 1998 Nov 24; 37(47):16686-96. PubMed ID: 9843437
    [Abstract] [Full Text] [Related]

  • 12. Predicted alterations in tertiary structure of the N-terminus of Na(+)/K(+)-ATPase alpha-subunit caused by phosphorylation or acidic replacement of the PKC phosphorylation site Ser-23.
    Brandt W, Anders A, Vasilets LA.
    Cell Biochem Biophys; 2002 Nov 24; 37(2):83-95. PubMed ID: 12482133
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Involvement of dopamine system in regulation of Na+,K+-ATPase in the striatum upon activation of opioid receptors by morphine.
    Wu ZQ, Chen J, Chi ZQ, Liu JG.
    Mol Pharmacol; 2007 Feb 24; 71(2):519-30. PubMed ID: 17068092
    [Abstract] [Full Text] [Related]

  • 16. Contrary to rat-type, human-type Na,K-ATPase is phosphorylated at the same amino acid by hormones that produce opposite effects on enzyme activity.
    Efendiev R, Pedemonte CH.
    J Am Soc Nephrol; 2006 Jan 24; 17(1):31-8. PubMed ID: 16338965
    [Abstract] [Full Text] [Related]

  • 17. Regulatory phosphorylation of FXYD2 by PKC and cross interactions between FXYD2, plasmalemmal Ca-ATPase and Na,K-ATPase.
    Cortes VF, Ribeiro IM, Barrabin H, Alves-Ferreira M, Fontes CF.
    Arch Biochem Biophys; 2011 Jan 01; 505(1):75-82. PubMed ID: 20869944
    [Abstract] [Full Text] [Related]

  • 18. Phospholemman phosphorylation mediates the protein kinase C-dependent effects on Na+/K+ pump function in cardiac myocytes.
    Han F, Bossuyt J, Despa S, Tucker AL, Bers DM.
    Circ Res; 2006 Dec 08; 99(12):1376-83. PubMed ID: 17095720
    [Abstract] [Full Text] [Related]

  • 19. Partial reactions of the Na,K-ATPase: kinetic analysis and transport properties.
    Apell HJ, Schneeberger A, Sokolov VS.
    Acta Physiol Scand Suppl; 1998 Aug 08; 643():235-45. PubMed ID: 9789566
    [Abstract] [Full Text] [Related]

  • 20. Identification of potential regulatory sites of the Na+,K+-ATPase by kinetic analysis.
    Kong BY, Clarke RJ.
    Biochemistry; 2004 Mar 02; 43(8):2241-50. PubMed ID: 14979720
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.