These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


350 related items for PubMed ID: 1728910

  • 1. A study of chest compression rates during cardiopulmonary resuscitation in humans. The importance of rate-directed chest compressions.
    Kern KB, Sanders AB, Raife J, Milander MM, Otto CW, Ewy GA.
    Arch Intern Med; 1992 Jan; 152(1):145-9. PubMed ID: 1728910
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. End-tidal carbon dioxide and outcome of out-of-hospital cardiac arrest.
    Levine RL, Wayne MA, Miller CC.
    N Engl J Med; 1997 Jul 31; 337(5):301-6. PubMed ID: 9233867
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Out-of-hospital cardiopulmonary resuscitation with the AutoPulse system: a prospective observational study with a new load-distributing band chest compression device.
    Krep H, Mamier M, Breil M, Heister U, Fischer M, Hoeft A.
    Resuscitation; 2007 Apr 31; 73(1):86-95. PubMed ID: 17254691
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Minimal interruption of cardiopulmonary resuscitation for a single shock as mandated by automated external defibrillations does not compromise outcomes in a porcine model of cardiac arrest and resuscitation.
    Ristagno G, Tang W, Russell JK, Jorgenson D, Wang H, Sun S, Weil MH.
    Crit Care Med; 2008 Nov 31; 36(11):3048-53. PubMed ID: 18824916
    [Abstract] [Full Text] [Related]

  • 12. End-tidal carbon dioxide tension as a monitor of native blood flow during resuscitation by extracorporeal circulation.
    Gazmuri RJ, Weil MH, Bisera J, Rackow EC.
    J Thorac Cardiovasc Surg; 1991 Jun 31; 101(6):984-8. PubMed ID: 1903826
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation.
    Rubertsson S, Karlsten R.
    Resuscitation; 2005 Jun 31; 65(3):357-63. PubMed ID: 15919574
    [Abstract] [Full Text] [Related]

  • 16. Safety, feasibility, and hemodynamic and blood flow effects of active compression-decompression of thorax and abdomen in patients with cardiac arrest.
    Havel C, Berzlanovich A, Sterz F, Domanovits H, Herkner H, Zeiner A, Behringer W, Laggner AN.
    Crit Care Med; 2008 Jun 31; 36(6):1832-7. PubMed ID: 18496364
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Arterial blood gases during basic life support of human cardiac arrest victims.
    Pytte M, Dorph E, Sunde K, Kramer-Johansen J, Wik L, Steen PA.
    Resuscitation; 2008 Apr 31; 77(1):35-8. PubMed ID: 18035475
    [Abstract] [Full Text] [Related]

  • 19. End-tidal carbon dioxide changes during cardiopulmonary resuscitation after experimental asphyxial cardiac arrest.
    Bhende MS, Karasic DG, Karasic RB.
    Am J Emerg Med; 1996 Jul 31; 14(4):349-50. PubMed ID: 8768152
    [Abstract] [Full Text] [Related]

  • 20. Stroke volumes and end-tidal carbon dioxide generated by precordial compression during ventricular fibrillation.
    Pernat A, Weil MH, Sun S, Tang W.
    Crit Care Med; 2003 Jun 31; 31(6):1819-23. PubMed ID: 12794425
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.