These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 17289117

  • 1. Arsenic fractionation in agricultural acid soils from NW Spain using a sequential extraction procedure.
    Nóvoa-Muñoz JC, Queijeiro JM, Blanco-Ward D, Alvarez-Olleros C, García-Rodeja E, Martínez-Cortizas A.
    Sci Total Environ; 2007 May 25; 378(1-2):18-22. PubMed ID: 17289117
    [Abstract] [Full Text] [Related]

  • 2. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A, Karczewska A.
    Sci Total Environ; 2007 Jul 01; 379(2-3):190-200. PubMed ID: 17187844
    [Abstract] [Full Text] [Related]

  • 3. Effect of biosolid incorporation on arsenic distribution in Mollisol soils in central Chile.
    Ascar L, Ahumada I, Richter P.
    Chemosphere; 2008 Jan 01; 70(7):1211-7. PubMed ID: 17889255
    [Abstract] [Full Text] [Related]

  • 4. Fractionation and bioavailability of arsenic in agricultural soils: solvent extraction tests and their relevance in risk assessment.
    Cornejo-Ponce L, Acarapi-Cartes J.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011 Jan 01; 46(11):1247-58. PubMed ID: 21879857
    [Abstract] [Full Text] [Related]

  • 5. Total copper content and its distribution in acid vineyards soils developed from granitic rocks.
    Nóvoa-Muñoz JC, Queijeiro JM, Blanco-Ward D, Alvarez-Olleros C, Martínez-Cortizas A, García-Rodeja E.
    Sci Total Environ; 2007 May 25; 378(1-2):23-7. PubMed ID: 17287013
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils.
    Anawar HM, Garcia-Sanchez A, Santa Regina I.
    Chemosphere; 2008 Feb 25; 70(8):1459-67. PubMed ID: 17936872
    [Abstract] [Full Text] [Related]

  • 7. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E, Zagury GJ.
    Sci Total Environ; 2009 Apr 01; 407(8):2576-85. PubMed ID: 19211134
    [Abstract] [Full Text] [Related]

  • 8. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils.
    Smith E, Naidu R, Weber J, Juhasz AL.
    Chemosphere; 2008 Mar 01; 71(4):773-80. PubMed ID: 18023842
    [Abstract] [Full Text] [Related]

  • 9. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L, Donahoe RJ, Redwine JC.
    Sci Total Environ; 2007 Nov 15; 387(1-3):28-41. PubMed ID: 17673278
    [Abstract] [Full Text] [Related]

  • 10. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study.
    Datta R, Sarkar D, Sharma S, Sand K.
    Sci Total Environ; 2006 Dec 15; 372(1):39-48. PubMed ID: 16973204
    [Abstract] [Full Text] [Related]

  • 11. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M, Hwang JS, Choi SI.
    Chemosphere; 2007 Jan 15; 66(1):8-17. PubMed ID: 16831457
    [Abstract] [Full Text] [Related]

  • 12. Distribution and mobility of arsenic in soils of a mining area (Western Spain).
    García-Sánchez A, Alonso-Rojo P, Santos-Francés F.
    Sci Total Environ; 2010 Sep 01; 408(19):4194-201. PubMed ID: 20538319
    [Abstract] [Full Text] [Related]

  • 13. Aluminum fractionation in acidic soils and river sediments in the Upper Mero basin (Galicia, NW Spain).
    Palleiro L, Patinha C, Rodríguez-Blanco ML, Taboada-Castro MM, Taboada-Castro MT.
    Environ Geochem Health; 2018 Oct 01; 40(5):1803-1815. PubMed ID: 28342154
    [Abstract] [Full Text] [Related]

  • 14. Dynamics of arsenic in the mining sites of Pine Creek Geosyncline, Northern Australia.
    Eapaea MP, Parry D, Noller B.
    Sci Total Environ; 2007 Jul 01; 379(2-3):201-15. PubMed ID: 17499841
    [Abstract] [Full Text] [Related]

  • 15. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.
    Craw D.
    J Environ Manage; 2005 Feb 01; 74(3):283-92. PubMed ID: 15644268
    [Abstract] [Full Text] [Related]

  • 16. Implications of the use of As-rich groundwater for agricultural purposes and the effects of soil amendments on as solubility.
    de la Fuente C, Clemente R, Alburquerque JA, Vélez D, Bernal MP.
    Environ Sci Technol; 2010 Dec 15; 44(24):9463-9. PubMed ID: 21090743
    [Abstract] [Full Text] [Related]

  • 17. Bioaccessible and non-bioaccessible fractions of soil arsenic.
    Whitacre SD, Basta NT, Dayton EA.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013 Dec 15; 48(6):620-8. PubMed ID: 23442113
    [Abstract] [Full Text] [Related]

  • 18. Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus.
    Hossain MB, Jahiruddin M, Panaullah GM, Loeppert RH, Islam MR, Duxbury JM.
    Environ Pollut; 2008 Dec 15; 156(3):739-44. PubMed ID: 18644665
    [Abstract] [Full Text] [Related]

  • 19. Cattle as biomonitors of soil arsenic, copper, and zinc concentrations in Galicia (NW Spain).
    López Alonso M, Benedito JL, Miranda M, Castillo C, Hernández J, Shore RF.
    Arch Environ Contam Toxicol; 2002 Jul 15; 43(1):103-8. PubMed ID: 12045880
    [Abstract] [Full Text] [Related]

  • 20. Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium).
    Du Laing G, Chapagain SK, Dewispelaere M, Meers E, Kazama F, Tack FM, Rinklebe J, Verloo MG.
    J Environ Monit; 2009 Apr 15; 11(4):873-81. PubMed ID: 19557243
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.