These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


628 related items for PubMed ID: 17295422

  • 1. Quantitative analysis of cation binding to the adenosine nucleotides using the variable ionic strength method: validation of the Debye-Hückel-Onsager theory of electrophoresis in the absence of counterion binding.
    Stellwagen E, Stellwagen NC.
    Electrophoresis; 2007 Apr; 28(7):1053-62. PubMed ID: 17295422
    [Abstract] [Full Text] [Related]

  • 2. Determination of stability constants of valinomycin complexes with ammonium and alkali metal ions by capillary affinity electrophoresis.
    Ehala S, Kasicka V, Makrlík E.
    Electrophoresis; 2008 Feb; 29(3):652-7. PubMed ID: 18200647
    [Abstract] [Full Text] [Related]

  • 3. Investigation of the effect of ionic strength of Tris-acetate background electrolyte on electrophoretic mobilities of mono-, di-, and trivalent organic anions by capillary electrophoresis.
    Koval D, Kasicka V, Zusková I.
    Electrophoresis; 2005 Sep; 26(17):3221-31. PubMed ID: 16097028
    [Abstract] [Full Text] [Related]

  • 4. Influence of methanol as a buffer additive on the mobilities of organic cations in capillary electrophoresis.
    Roy KI, Lucy CA.
    Electrophoresis; 2003 Jan; 24(3):370-9. PubMed ID: 12569529
    [Abstract] [Full Text] [Related]

  • 5. Application of capillary affinity electrophoresis and density functional theory to the investigation of valinomycin-lithium complex.
    Ehala S, Dybal J, Makrlík E, Kasicka V.
    J Chromatogr A; 2009 Apr 24; 1216(17):3660-5. PubMed ID: 19233367
    [Abstract] [Full Text] [Related]

  • 6. Quantitative analysis of monovalent counterion binding to random-sequence, double-stranded DNA using the replacement ion method.
    Stellwagen E, Dong Q, Stellwagen NC.
    Biochemistry; 2007 Feb 20; 46(7):2050-8. PubMed ID: 17253778
    [Abstract] [Full Text] [Related]

  • 7. Interaction study of a lysozyme-binding aptamer with mono- and divalent cations by ACE.
    Girardot M, Gareil P, Varenne A.
    Electrophoresis; 2010 Jan 20; 31(3):546-55. PubMed ID: 20119964
    [Abstract] [Full Text] [Related]

  • 8. Monovalent cations affect the free solution mobility of DNA by perturbing the hydrogen-bonded structure of water.
    Stellwagen E, Dong Q, Stellwagen NC.
    Biopolymers; 2005 Jun 05; 78(2):62-8. PubMed ID: 15739179
    [Abstract] [Full Text] [Related]

  • 9. Electrophoretic mobilities of large organic ions in nonaqueous solvents: determination by capillary electrophoresis in propylene carbonate, N,N-dimethylformamide, N,N,-dimethylacetamide, acetonitrile and methanol.
    Muzikar J, van De Goor T, Gas B, Kenndler E.
    Electrophoresis; 2002 Feb 05; 23(3):375-82. PubMed ID: 11870736
    [Abstract] [Full Text] [Related]

  • 10. The free solution mobility of DNA in Tris-acetate-EDTA buffers of different concentrations, with and without added NaCl.
    Stellwagen E, Stellwagen NC.
    Electrophoresis; 2002 Jun 05; 23(12):1935-41. PubMed ID: 12116139
    [Abstract] [Full Text] [Related]

  • 11. Monovalent cation binding in the minor groove of DNA A-tracts.
    Dong Q, Stellwagen E, Stellwagen NC.
    Biochemistry; 2009 Feb 10; 48(5):1047-55. PubMed ID: 19154116
    [Abstract] [Full Text] [Related]

  • 12. Monovalent cation size and DNA conformational stability.
    Stellwagen E, Muse JM, Stellwagen NC.
    Biochemistry; 2011 Apr 19; 50(15):3084-94. PubMed ID: 21410141
    [Abstract] [Full Text] [Related]

  • 13. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K, Stellwagen NC.
    Electrophoresis; 1998 May 19; 19(5):635-42. PubMed ID: 9629889
    [Abstract] [Full Text] [Related]

  • 14. Probing the electrostatic shielding of DNA with capillary electrophoresis.
    Stellwagen E, Stellwagen NC.
    Biophys J; 2003 Mar 19; 84(3):1855-66. PubMed ID: 12609887
    [Abstract] [Full Text] [Related]

  • 15. Nucleotide-binding kinetics of Na,K-ATPase: cation dependence.
    Fedosova NU, Esmann M.
    Biochemistry; 2004 Apr 13; 43(14):4212-8. PubMed ID: 15065865
    [Abstract] [Full Text] [Related]

  • 16. Reliable electrophoretic mobilities free from Joule heating effects using CE.
    Evenhuis CJ, Hruska V, Guijt RM, Macka M, Gas B, Marriott PJ, Haddad PR.
    Electrophoresis; 2007 Oct 13; 28(20):3759-66. PubMed ID: 17941134
    [Abstract] [Full Text] [Related]

  • 17. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model.
    Zhou MX, Foley JP.
    Anal Chem; 2006 Mar 15; 78(6):1849-58. PubMed ID: 16536420
    [Abstract] [Full Text] [Related]

  • 18. Capillary electrophoresis of boron cluster compounds in aqueous and nonaqueous solvents.
    Valeri AL, Kremser L, Raggi MA, Grüner B, Vespalec R, Kenndler E.
    Electrophoresis; 2008 Apr 15; 29(8):1658-66. PubMed ID: 18383019
    [Abstract] [Full Text] [Related]

  • 19. The effects of monovalent cations Li+, Na+, K+, NH4+, Rb+ and Cs+ on the solid and solution structures of the nucleic acid components. Metal ion binding and sugar conformation.
    Tajmir-Riahi HA, Messaoudi S.
    J Biomol Struct Dyn; 1992 Oct 15; 10(2):345-65. PubMed ID: 1334674
    [Abstract] [Full Text] [Related]

  • 20. Stabilization of RNA tertiary structure by monovalent cations.
    Shiman R, Draper DE.
    J Mol Biol; 2000 Sep 08; 302(1):79-91. PubMed ID: 10964562
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.