These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
105 related items for PubMed ID: 17296269
1. Site-directed mutagenesis of two aromatic residues lining the active site pocket of the yeast Ltp1. Paoli P, Modesti A, Magherini F, Gamberi T, Caselli A, Manao G, Raugei G, Camici G, Ramponi G. Biochim Biophys Acta; 2007 May; 1770(5):753-62. PubMed ID: 17296269 [Abstract] [Full Text] [Related]
2. Roles of active site aromatic residues in catalysis by ketosteroid isomerase from Pseudomonas putida biotype B. Kim DH, Nam GH, Jang DS, Choi G, Joo S, Kim JS, Oh BH, Choi KY. Biochemistry; 1999 Oct 19; 38(42):13810-9. PubMed ID: 10529226 [Abstract] [Full Text] [Related]
3. Effects on general acid catalysis from mutations of the invariant tryptophan and arginine residues in the protein tyrosine phosphatase from Yersinia. Hoff RH, Hengge AC, Wu L, Keng YF, Zhang ZY. Biochemistry; 2000 Jan 11; 39(1):46-54. PubMed ID: 10625478 [Abstract] [Full Text] [Related]
4. Yeast sterol C24-methyltransferase: role of highly conserved tyrosine-81 in catalytic competence studied by site-directed mutagenesis and thermodynamic analysis. Nes WD, Jayasimha P, Song Z. Arch Biochem Biophys; 2008 Sep 15; 477(2):313-23. PubMed ID: 18555004 [Abstract] [Full Text] [Related]
5. Alanine scanning mutagenesis of the testosterone binding site of rat 3 alpha-hydroxysteroid dehydrogenase demonstrates contact residues influence the rate-determining step. Heredia VV, Cooper WC, Kruger RG, Jin Y, Penning TM. Biochemistry; 2004 May 18; 43(19):5832-41. PubMed ID: 15134457 [Abstract] [Full Text] [Related]
6. Kinetic and spectroscopic studies of Tritrichomonas foetus low-molecular weight phosphotyrosyl phosphatase. Hydrogen bond networks and electrostatic effects. Thomas CL, McKinnon E, Granger BL, Harms E, Van Etten RL. Biochemistry; 2002 Dec 31; 41(52):15601-9. PubMed ID: 12501188 [Abstract] [Full Text] [Related]
7. Roles of active site tryptophans in substrate binding and catalysis by alpha-1,3 galactosyltransferase. Zhang Y, Deshpande A, Xie Z, Natesh R, Acharya KR, Brew K. Glycobiology; 2004 Dec 31; 14(12):1295-302. PubMed ID: 15229192 [Abstract] [Full Text] [Related]
8. Role of active-site residues Thr81, Ser82, Thr85, Gln157, and Tyr158 in yeast cystathionine beta-synthase catalysis and reaction specificity. Aitken SM, Kirsch JF. Biochemistry; 2004 Feb 24; 43(7):1963-71. PubMed ID: 14967036 [Abstract] [Full Text] [Related]
9. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris. Demidkina TV, Zakomirdina LN, Kulikova VV, Dementieva IS, Faleev NG, Ronda L, Mozzarelli A, Gollnick PD, Phillips RS. Biochemistry; 2003 Sep 30; 42(38):11161-9. PubMed ID: 14503866 [Abstract] [Full Text] [Related]
10. Identification of Tyr413 as an active site residue in the flavoprotein tryptophan 2-monooxygenase and analysis of its contribution to catalysis. Sobrado P, Fitzpatrick PF. Biochemistry; 2003 Dec 02; 42(47):13833-8. PubMed ID: 14636050 [Abstract] [Full Text] [Related]
11. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B. Biochemistry; 2004 May 04; 43(17):4944-54. PubMed ID: 15109252 [Abstract] [Full Text] [Related]
12. Tyrosine residues serve as proton donor in the catalytic mechanism of epoxide hydrolase from Agrobacterium radiobacter. Rink R, Kingma J, Lutje Spelberg JH, Janssen DB. Biochemistry; 2000 May 09; 39(18):5600-13. PubMed ID: 10820034 [Abstract] [Full Text] [Related]
13. Identification of amino acid residues essential for the yeast N-acetyltransferase Mpr1 activity by site-directed mutagenesis. Kotani T, Takagi H. FEMS Yeast Res; 2008 Jun 09; 8(4):607-14. PubMed ID: 18373682 [Abstract] [Full Text] [Related]
14. Point mutations in the extracytosolic loop between transmembrane segments M5 and M6 of the yeast Pma1 H+-ATPase: alanine-scanning mutagenesis. Petrov VV. J Biomol Struct Dyn; 2015 Jun 09; 33(1):70-84. PubMed ID: 24256122 [Abstract] [Full Text] [Related]
15. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Qian J, Khandogin J, West AH, Cook PF. Biochemistry; 2008 Jul 01; 47(26):6851-8. PubMed ID: 18533686 [Abstract] [Full Text] [Related]
16. Kinetic characterization of the Escherichia coli oligopeptidase A (OpdA) and the role of the Tyr(607) residue. Lorenzon RZ, Cunha CE, Marcondes MF, Machado MF, Juliano MA, Oliveira V, Travassos LR, Paschoalin T, Carmona AK. Arch Biochem Biophys; 2010 Aug 15; 500(2):131-6. PubMed ID: 20513640 [Abstract] [Full Text] [Related]
17. Catalytic acid-base groups in yeast pyruvate decarboxylase. 1. Site-directed mutagenesis and steady-state kinetic studies on the enzyme with the D28A, H114F, H115F, and E477Q substitutions. Liu M, Sergienko EA, Guo F, Wang J, Tittmann K, Hübner G, Furey W, Jordan F. Biochemistry; 2001 Jun 26; 40(25):7355-68. PubMed ID: 11412090 [Abstract] [Full Text] [Related]
18. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change. Tang L, van Merode AE, Lutje Spelberg JH, Fraaije MW, Janssen DB. Biochemistry; 2003 Dec 02; 42(47):14057-65. PubMed ID: 14636074 [Abstract] [Full Text] [Related]
19. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine. Schlegel BP, Ratnam K, Penning TM. Biochemistry; 1998 Aug 04; 37(31):11003-11. PubMed ID: 9692994 [Abstract] [Full Text] [Related]
20. Investigation of the functional contributions of invariant serine residues in yeast mevalonate diphosphate decarboxylase. Krepkiy DV, Miziorko HM. Biochemistry; 2005 Feb 22; 44(7):2671-7. PubMed ID: 15709780 [Abstract] [Full Text] [Related] Page: [Next] [New Search]