These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


432 related items for PubMed ID: 17302440

  • 21. From N-WASP to WAVE: key molecules for regulation of cortical actin organization.
    Takenawa T.
    Novartis Found Symp; 2005; 269():3-10; discussion 10-5, 30-4 passim. PubMed ID: 16355531
    [Abstract] [Full Text] [Related]

  • 22. In vitro reconstitution of cdc42-mediated actin assembly using purified components.
    Ho HY, Rohatgi R, Lebensohn AM, Kirschner MW.
    Methods Enzymol; 2006; 406():174-90. PubMed ID: 16472658
    [Abstract] [Full Text] [Related]

  • 23. HSP90 cross-links branched actin filaments induced by N-WASP and the Arp2/3 complex.
    Park SJ, Suetsugu S, Sagara H, Takenawa T.
    Genes Cells; 2007 May; 12(5):611-22. PubMed ID: 17535252
    [Abstract] [Full Text] [Related]

  • 24. Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines.
    Derivery E, Gautreau A.
    Bioessays; 2010 Feb; 32(2):119-31. PubMed ID: 20091750
    [Abstract] [Full Text] [Related]

  • 25. Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex.
    Higgs HN, Pollard TD.
    J Cell Biol; 2000 Sep 18; 150(6):1311-20. PubMed ID: 10995437
    [Abstract] [Full Text] [Related]

  • 26. The pleckstrin homology domain of the Wiskott-Aldrich syndrome protein is involved in the organization of actin cytoskeleton.
    Imai K, Nonoyama S, Miki H, Morio T, Fukami K, Zhu Q, Aruffo A, Ochs HD, Yata J, Takenawa T.
    Clin Immunol; 1999 Aug 18; 92(2):128-37. PubMed ID: 10444357
    [Abstract] [Full Text] [Related]

  • 27. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site.
    Zeng R, Cannon JL, Abraham RT, Way M, Billadeau DD, Bubeck-Wardenberg J, Burkhardt JK.
    J Immunol; 2003 Aug 01; 171(3):1360-8. PubMed ID: 12874226
    [Abstract] [Full Text] [Related]

  • 28. Cell motility: braking WAVEs.
    Cory GO, Ridley AJ.
    Nature; 2002 Aug 15; 418(6899):732-3. PubMed ID: 12181548
    [No Abstract] [Full Text] [Related]

  • 29. Protein complexes regulating Arp2/3-mediated actin assembly.
    Stradal TE, Scita G.
    Curr Opin Cell Biol; 2006 Feb 15; 18(1):4-10. PubMed ID: 16343889
    [Abstract] [Full Text] [Related]

  • 30. VEGF treatment induces signaling pathways that regulate both actin polymerization and depolymerization.
    Gong C, Stoletov KV, Terman BI.
    Angiogenesis; 2004 Feb 15; 7(4):313-21. PubMed ID: 15886875
    [Abstract] [Full Text] [Related]

  • 31. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex.
    Panchal SC, Kaiser DA, Torres E, Pollard TD, Rosen MK.
    Nat Struct Biol; 2003 Aug 15; 10(8):591-8. PubMed ID: 12872157
    [Abstract] [Full Text] [Related]

  • 32. Developmental expression of neural Wiskott-Aldrich syndrome protein (N-WASP) and WASP family verprolin-homologous protein (WAVE)-related proteins in postnatal rat cerebral cortex and hippocampus.
    Tsuchiya D, Kitamura Y, Takata K, Sugisaki T, Taniguchi T, Uemura K, Miki H, Takenawa T, Shimohama S.
    Neurosci Res; 2006 Dec 15; 56(4):459-69. PubMed ID: 17049400
    [Abstract] [Full Text] [Related]

  • 33. Cdc42, Rac1, and the Wiskott-Aldrich syndrome protein are involved in the cytoskeletal regulation of B lymphocytes.
    Westerberg L, Greicius G, Snapper SB, Aspenström P, Severinson E.
    Blood; 2001 Aug 15; 98(4):1086-94. PubMed ID: 11493455
    [Abstract] [Full Text] [Related]

  • 34. A novel neural Wiskott-Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42.
    Fukuoka M, Suetsugu S, Miki H, Fukami K, Endo T, Takenawa T.
    J Cell Biol; 2001 Feb 05; 152(3):471-82. PubMed ID: 11157975
    [Abstract] [Full Text] [Related]

  • 35. Differential regulation of cortactin and N-WASP-mediated actin polymerization by missing in metastasis (MIM) protein.
    Lin J, Liu J, Wang Y, Zhu J, Zhou K, Smith N, Zhan X.
    Oncogene; 2005 Mar 17; 24(12):2059-66. PubMed ID: 15688017
    [Abstract] [Full Text] [Related]

  • 36. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells.
    Martinez JJ, Cossart P.
    J Cell Sci; 2004 Oct 01; 117(Pt 21):5097-106. PubMed ID: 15383620
    [Abstract] [Full Text] [Related]

  • 37. Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation.
    Humphries AC, Donnelly SK, Way M.
    J Cell Sci; 2014 Feb 01; 127(Pt 3):673-85. PubMed ID: 24284073
    [Abstract] [Full Text] [Related]

  • 38. Phosphatidylinositol 4,5-biphosphate (PIP2)-induced vesicle movement depends on N-WASP and involves Nck, WIP, and Grb2.
    Benesch S, Lommel S, Steffen A, Stradal TE, Scaplehorn N, Way M, Wehland J, Rottner K.
    J Biol Chem; 2002 Oct 04; 277(40):37771-6. PubMed ID: 12147689
    [Abstract] [Full Text] [Related]

  • 39. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate.
    Rohatgi R, Ho HY, Kirschner MW.
    J Cell Biol; 2000 Sep 18; 150(6):1299-310. PubMed ID: 10995436
    [Abstract] [Full Text] [Related]

  • 40. A two-state allosteric model for autoinhibition rationalizes WASP signal integration and targeting.
    Buck M, Xu W, Rosen MK.
    J Mol Biol; 2004 Apr 23; 338(2):271-85. PubMed ID: 15066431
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.