These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
269 related items for PubMed ID: 17304566
21. Low temperature removal of inorganic sulfur compounds from mining process waters. Liljeqvist M, Sundkvist JE, Saleh A, Dopson M. Biotechnol Bioeng; 2011 Jun; 108(6):1251-9. PubMed ID: 21280027 [Abstract] [Full Text] [Related]
26. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans. Liu F, Zhou J, Jin T, Zhang S, Liu L. Water Sci Technol; 2016 Jul; 73(6):1442-53. PubMed ID: 27003087 [Abstract] [Full Text] [Related]
27. Toxicity evaluation of complex metal mixtures using reduced metal concentrations: application to iron oxidation by Acidithiobacillus ferrooxidans. Cho KS, Ryu HW, Choi HM. J Microbiol Biotechnol; 2008 Jul; 18(7):1298-307. PubMed ID: 18667860 [Abstract] [Full Text] [Related]
28. Genomic and phenotypic heterogeneity of Acidithiobacillus spp. strains isolated from diverse habitats in China. Ni YQ, He KY, Bao JT, Yang Y, Wan DS, Li HY. FEMS Microbiol Ecol; 2008 May; 64(2):248-59. PubMed ID: 18373686 [Abstract] [Full Text] [Related]
29. "Isolation, identification, characterization and polymetallic concentrate leaching studies of tryptic soy- and peptone-resistant thermotolerant Acidithiobacillus ferrooxidans SRDSM2". Patel MJ, Tipre DR, Dave SR. Bioresour Technol; 2011 Jan; 102(2):1602-7. PubMed ID: 20863700 [Abstract] [Full Text] [Related]
35. Proteomic and bioinformatic analysis of iron- and sulfur-oxidizing Acidithiobacillus ferrooxidans using immobilized pH gradients and mass spectrometry. Bouchal P, Zdráhal Z, Helánová S, Janiczek O, Hallberg KB, Mandl M. Proteomics; 2006 Aug; 6(15):4278-85. PubMed ID: 16807941 [Abstract] [Full Text] [Related]
36. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. Yujian W, Xiaojuan Y, Wei T, Hongyu L. J Microbiol Methods; 2007 Feb; 68(2):212-7. PubMed ID: 16979768 [Abstract] [Full Text] [Related]
37. Missing Iron-Oxidizing Acidophiles Highly Sensitive to Organic Compounds. Ueoka N, Kouzuma A, Watanabe K. Microbes Environ; 2016 Sep 29; 31(3):244-8. PubMed ID: 27356527 [Abstract] [Full Text] [Related]
38. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. Bryan CG, Davis-Belmar CS, van Wyk N, Fraser MK, Dew D, Rautenbach GF, Harrison ST. Biotechnol Bioeng; 2012 Jul 29; 109(7):1693-703. PubMed ID: 22383083 [Abstract] [Full Text] [Related]
39. Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells. Xiong H, Liao Y, Zhou L. Environ Sci Technol; 2008 Dec 01; 42(23):8681-6. PubMed ID: 19192781 [Abstract] [Full Text] [Related]
40. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition. Li X, Mercado R, Kernan T, West AC, Banta S. Biotechnol Bioeng; 2014 Oct 01; 111(10):1940-8. PubMed ID: 24771134 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]