These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Redundancy analysis demonstration of the relevance of temperature to ammonia-oxidizing bacterial community compositions in a full-scale nitrifying bioreactor treating saline wastewater. Park HD, Lee SY, Hwang S. J Microbiol Biotechnol; 2009 Apr; 19(4):346-50. PubMed ID: 19420988 [Abstract] [Full Text] [Related]
64. [Study on the ammonia-oxidizing bacteria from activated sludge samples by the molecular analysis]. Xu M, Zeng G, Ren S, Cen Y, Sun G, Guo J. Wei Sheng Wu Xue Bao; 2003 Jun; 43(3):372-8. PubMed ID: 16279205 [Abstract] [Full Text] [Related]
66. Transcription of the amoC, amoA and amoB genes in Nitrosomonas europaea and Nitrosospira sp. NpAV. Sayavedra-Soto LA, Hommes NG, Alzerreca JJ, Arp DJ, Norton JM, Klotz MG. FEMS Microbiol Lett; 1998 Oct 01; 167(1):81-8. PubMed ID: 9785456 [Abstract] [Full Text] [Related]
67. Electron paramagnetic studies of the copper and iron containing soluble ammonia monooxygenase from Nitrosomonas europaea. Gilch S, Meyer O, Schmidt I. Biometals; 2010 Aug 01; 23(4):613-22. PubMed ID: 20204476 [Abstract] [Full Text] [Related]
68. Role of nitrogen oxides in the metabolism of ammonia-oxidizing bacteria. Kampschreur MJ, Tan NC, Picioreanu C, Jetten MS, Schmidt I, van Loosdrecht MC. Biochem Soc Trans; 2006 Feb 01; 34(Pt 1):179-81. PubMed ID: 16417515 [Abstract] [Full Text] [Related]
69. Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe. Malinowski M, Alawi M, Krohn I, Ruff S, Indenbirken D, Alawi M, Karrasch M, Lüschow R, Streit WR, Timmermann G, Pommerening-Röser A. Sci Rep; 2020 Oct 13; 10(1):17165. PubMed ID: 33051504 [Abstract] [Full Text] [Related]
70. Inhibition of phenol on the rates of ammonia oxidation by Nitrosomonas europaea grown under batch, continuous fed, and biofilm conditions. Lauchnor EG, Semprini L. Water Res; 2013 Sep 01; 47(13):4692-700. PubMed ID: 23770483 [Abstract] [Full Text] [Related]
73. Characterizing the metabolic trade-off in Nitrosomonas europaea in response to changes in inorganic carbon supply. Jiang D, Khunjar WO, Wett B, Murthy SN, Chandran K. Environ Sci Technol; 2015 Feb 17; 49(4):2523-31. PubMed ID: 25546702 [Abstract] [Full Text] [Related]
76. Ammonium and hydroxylamine uptake and accumulation in Nitrosomonas. Schmidt I, Look C, Bock E, Jetten MSM. Microbiology (Reading); 2004 May 17; 150(Pt 5):1405-1412. PubMed ID: 15133102 [Abstract] [Full Text] [Related]
77. Effects of gaseous NO2 on cells of Nitrosomonas eutropha previously incapable of using ammonia as an energy source. Schmidt I, Zart D, Bock E. Antonie Van Leeuwenhoek; 2001 Jan 17; 79(1):39-47. PubMed ID: 11392482 [Abstract] [Full Text] [Related]
78. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter. Vadivelu VM, Keller J, Yuan Z. Water Sci Technol; 2007 Jan 17; 56(7):89-97. PubMed ID: 17951872 [Abstract] [Full Text] [Related]
79. Detection and quantification of expression of amoA by competitive reverse transcription-pCR. Ebie Y, Miura H, Noda N, Matsumura M, Tsuneda S, Hirata A, Inamori Y. Water Sci Technol; 2002 Jan 17; 46(1-2):281-8. PubMed ID: 12216637 [Abstract] [Full Text] [Related]
80. Oxidation of Nitrapyrin to 6-Chloropicolinic Acid by the Ammonia-Oxidizing Bacterium Nitrosomonas europaea. Vannelli T, Hooper AB. Appl Environ Microbiol; 1992 Jul 17; 58(7):2321-5. PubMed ID: 16348740 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]