These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


296 related items for PubMed ID: 17309218

  • 21. Via zinc(II) protoporphyrin to the synthesis of poly(ZnPP-MAA-EGDMA) for the imprinting and selective binding of bilirubin.
    Chou SK, Syu MJ.
    Biomaterials; 2009 Mar; 30(7):1255-62. PubMed ID: 19100614
    [Abstract] [Full Text] [Related]

  • 22. Influence of hydrophobe on the release behavior of vinyl acetate miniemulsion polymerization.
    Park SJ, Kim KS.
    Colloids Surf B Biointerfaces; 2005 Nov 25; 46(1):52-6. PubMed ID: 16214307
    [Abstract] [Full Text] [Related]

  • 23. Synthesis of silanol-functionalized latex nanoparticles through miniemulsion copolymerization of styrene and gamma-methacryloxypropyltrimethoxysilane.
    Zhang SW, Zhou SX, Weng YM, Wu LM.
    Langmuir; 2006 May 09; 22(10):4674-9. PubMed ID: 16649781
    [Abstract] [Full Text] [Related]

  • 24. One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization.
    Kong H, Jang J.
    Chem Commun (Camb); 2006 Jul 28; (28):3010-2. PubMed ID: 16832520
    [Abstract] [Full Text] [Related]

  • 25. Synthesis and characterization of novel reversible photoswitchable fluorescent polymeric nanoparticles via one-step miniemulsion polymerization.
    Chen J, Zhang P, Fang G, Yi P, Yu X, Li X, Zeng F, Wu S.
    J Phys Chem B; 2011 Apr 07; 115(13):3354-62. PubMed ID: 21405122
    [Abstract] [Full Text] [Related]

  • 26. Synthesis of magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles and their uses in the extraction and sensing of target molecules in urine.
    Lee MH, Thomas JL, Ho MH, Yuan C, Lin HY.
    ACS Appl Mater Interfaces; 2010 Jun 07; 2(6):1729-36. PubMed ID: 20521774
    [Abstract] [Full Text] [Related]

  • 27. Incorporation of styrene enhances recognition of ribonuclease A by molecularly imprinted polymers.
    Hsu CY, Lin HY, Thomas JL, Wu BT, Chou TC.
    Biosens Bioelectron; 2006 Sep 15; 22(3):355-63. PubMed ID: 16781138
    [Abstract] [Full Text] [Related]

  • 28. Synthesis of nanosized (<20 nm) polymer particles by radical polymerization in miniemulsion employing in situ surfactant formation.
    Guo Y, Zetterlund PB.
    Macromol Rapid Commun; 2011 Oct 18; 32(20):1669-75. PubMed ID: 21751279
    [Abstract] [Full Text] [Related]

  • 29. Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition.
    Ouyang R, Lei J, Ju H.
    Nanotechnology; 2010 May 07; 21(18):185502. PubMed ID: 20388981
    [Abstract] [Full Text] [Related]

  • 30. Supported imprinted nanospheres for the selective recognition of cholesterol.
    Ciardelli G, Borrelli C, Silvestri D, Cristallini C, Barbani N, Giusti P.
    Biosens Bioelectron; 2006 Jun 15; 21(12):2329-38. PubMed ID: 16574398
    [Abstract] [Full Text] [Related]

  • 31. Toward living radical polymerization.
    Moad G, Rizzardo E, Thang SH.
    Acc Chem Res; 2008 Sep 15; 41(9):1133-42. PubMed ID: 18700787
    [Abstract] [Full Text] [Related]

  • 32. Synthesis of nanometer-scale polymeric structures on surfaces from template assisted admicellar polymerization: a comparative study with protein adsorption.
    Marquez M, Patel K, Carswell AD, Schmidtke DW, Grady BP.
    Langmuir; 2006 Sep 12; 22(19):8010-6. PubMed ID: 16952235
    [Abstract] [Full Text] [Related]

  • 33. Multi-analyte imprinting capability of OMNiMIPs versus traditional molecularly imprinted polymers.
    Meng AC, LeJeune J, Spivak DA.
    J Mol Recognit; 2009 Sep 12; 22(2):121-8. PubMed ID: 19195014
    [Abstract] [Full Text] [Related]

  • 34. Porous molecularly imprinted polymer membranes and polymeric particles.
    Sergeyeva TA, Brovko OO, Piletska EV, Piletsky SA, Goncharova LA, Karabanova LV, Sergeyeva LM, El'skaya AV.
    Anal Chim Acta; 2007 Jan 23; 582(2):311-9. PubMed ID: 17386508
    [Abstract] [Full Text] [Related]

  • 35. Synthesis of thermo-responsive bovine hemoglobin imprinted nanoparticles by combining ionic liquid immobilization with aqueous precipitation polymerization.
    Wang Y, Yang C, Sun Y, Qiu F, Xiang Y, Fu G.
    J Sep Sci; 2018 Feb 23; 41(3):765-773. PubMed ID: 29130634
    [Abstract] [Full Text] [Related]

  • 36. Comment on "Preparation of superparamagnetic ribonuclease a surface-imprinted submicrometer particles for protein recognition in aqueous media".
    Fu G, Zhu J, Jiang Y.
    Anal Chem; 2008 Apr 01; 80(7):2634-5. PubMed ID: 18321138
    [No Abstract] [Full Text] [Related]

  • 37. Molecularly imprinted polymers for corticosteroids: analysis of binding selectivity.
    Baggiani C, Baravalle P, Giovannoli C, Anfossi L, Giraudi G.
    Biosens Bioelectron; 2010 Oct 15; 26(2):590-5. PubMed ID: 20688510
    [Abstract] [Full Text] [Related]

  • 38. On inverse miniemulsion polymerization of conventional water-soluble monomers.
    Capek I.
    Adv Colloid Interface Sci; 2010 Apr 22; 156(1-2):35-61. PubMed ID: 20199767
    [Abstract] [Full Text] [Related]

  • 39. The effectively specific recognition of bovine serum albumin imprinted silica nanoparticles by utilizing a macromolecularly functional monomer to stabilize and imprint template.
    Qian L, Hu X, Guan P, Wang D, Li J, Du C, Song R, Wang C, Song W.
    Anal Chim Acta; 2015 Jul 16; 884():97-105. PubMed ID: 26073815
    [Abstract] [Full Text] [Related]

  • 40. Lysozyme-imprinted polymer synthesized using UV free-radical polymerization.
    Yu S, Luo AQ, Biswal D, Hilt JZ, Puleo DA.
    Talanta; 2010 Nov 15; 83(1):156-61. PubMed ID: 21035657
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.