These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
282 related items for PubMed ID: 17313226
1. Free energy of liquid water from a computer simulation via cell theory. Henchman RH. J Chem Phys; 2007 Feb 14; 126(6):064504. PubMed ID: 17313226 [Abstract] [Full Text] [Related]
2. Classical and quantum gibbs free energies and phase behavior of water using simulation and cell theory. Klefas-Stennett M, Henchman RH. J Phys Chem B; 2008 Aug 14; 112(32):9769-76. PubMed ID: 18637683 [Abstract] [Full Text] [Related]
3. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. Shirts MR, Pande VS. J Chem Phys; 2005 Apr 01; 122(13):134508. PubMed ID: 15847482 [Abstract] [Full Text] [Related]
4. Clusters of classical water models. Kiss PT, Baranyai A. J Chem Phys; 2009 Nov 28; 131(20):204310. PubMed ID: 19947683 [Abstract] [Full Text] [Related]
6. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point. Horn HW, Swope WC, Pitera JW. J Chem Phys; 2005 Nov 15; 123(19):194504. PubMed ID: 16321097 [Abstract] [Full Text] [Related]
7. Competing quantum effects in the dynamics of a flexible water model. Habershon S, Markland TE, Manolopoulos DE. J Chem Phys; 2009 Jul 14; 131(2):024501. PubMed ID: 19603998 [Abstract] [Full Text] [Related]
8. Surface tension of the most popular models of water by using the test-area simulation method. Vega C, de Miguel E. J Chem Phys; 2007 Apr 21; 126(15):154707. PubMed ID: 17461659 [Abstract] [Full Text] [Related]
9. Properties of ices at 0 K: a test of water models. Aragones JL, Noya EG, Abascal JL, Vega C. J Chem Phys; 2007 Oct 21; 127(15):154518. PubMed ID: 17949184 [Abstract] [Full Text] [Related]
10. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models. Paschek D. J Chem Phys; 2004 Apr 08; 120(14):6674-90. PubMed ID: 15267560 [Abstract] [Full Text] [Related]
11. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations. Lin ST, Maiti PK, Goddard WA. J Phys Chem B; 2010 Jun 24; 114(24):8191-8. PubMed ID: 20504009 [Abstract] [Full Text] [Related]
12. Entropy-driven population distributions in a prototypical molecule with two flexible side chains: O-(2-acetamidoethyl)-N-acetyltyramine. Shubert VA, Baquero EE, Clarkson JR, James WH, Turk JA, Hare AA, Worrel K, Lipton MA, Schofield DP, Jordan KD, Zwier TS. J Chem Phys; 2007 Dec 21; 127(23):234315. PubMed ID: 18154390 [Abstract] [Full Text] [Related]
13. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability. Warren GL, Patel S. J Chem Phys; 2007 Aug 14; 127(6):064509. PubMed ID: 17705614 [Abstract] [Full Text] [Related]
18. Modeling of mixing acetone and water: how can their full miscibility be reproduced in computer simulations? Pinke A, Jedlovszky P. J Phys Chem B; 2012 May 24; 116(20):5977-84. PubMed ID: 22524681 [Abstract] [Full Text] [Related]
19. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum. Vendrell O, Brill M, Gatti F, Lauvergnat D, Meyer HD. J Chem Phys; 2009 Jun 21; 130(23):234305. PubMed ID: 19548725 [Abstract] [Full Text] [Related]