These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


395 related items for PubMed ID: 17319697

  • 1. Solution structure and interaction of cupiennin 1a, a spider venom peptide, with phospholipid bilayers.
    Pukala TL, Boland MP, Gehman JD, Kuhn-Nentwig L, Separovic F, Bowie JH.
    Biochemistry; 2007 Mar 20; 46(11):3576-85. PubMed ID: 17319697
    [Abstract] [Full Text] [Related]

  • 2. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study.
    Sherman PJ, Jackway RJ, Gehman JD, Praporski S, McCubbin GA, Mechler A, Martin LL, Separovic F, Bowie JH.
    Biochemistry; 2009 Dec 22; 48(50):11892-901. PubMed ID: 19894755
    [Abstract] [Full Text] [Related]

  • 3. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study.
    Ouellet M, Doucet JD, Voyer N, Auger M.
    Biochemistry; 2007 Jun 05; 46(22):6597-606. PubMed ID: 17487978
    [Abstract] [Full Text] [Related]

  • 4. Cupiennin 1a, an antimicrobial peptide from the venom of the neotropical wandering spider Cupiennius salei, also inhibits the formation of nitric oxide by neuronal nitric oxide synthase.
    Pukala TL, Doyle JR, Llewellyn LE, Kuhn-Nentwig L, Apponyi MA, Separovic F, Bowie JH.
    FEBS J; 2007 Apr 05; 274(7):1778-84. PubMed ID: 17313650
    [Abstract] [Full Text] [Related]

  • 5. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX, Damodaran K, Blazyk J, Lorigan GA.
    Biochemistry; 2005 Aug 02; 44(30):10208-17. PubMed ID: 16042398
    [Abstract] [Full Text] [Related]

  • 6. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C, Abbassi F, Lequin O, Ayala-Sanmartin J, Ladram A, Nicolas P, Amiche M.
    Biochemistry; 2009 Jan 20; 48(2):313-27. PubMed ID: 19113844
    [Abstract] [Full Text] [Related]

  • 7. Interaction of a type II myosin with biological membranes studied by 2H solid state NMR.
    Arêas JA, Gröbner G, Glaubitz C, Watts A.
    Biochemistry; 1998 Apr 21; 37(16):5582-8. PubMed ID: 9548943
    [Abstract] [Full Text] [Related]

  • 8. Lipid interactions of acylated tryptophan-methylated lactoferricin peptides by solid-state NMR.
    Greathouse D, Vostrikov V, McClellan N, Chipollini J, Lay J, Liyanage R, Ladd T.
    J Pept Sci; 2008 Oct 21; 14(10):1103-10. PubMed ID: 18523968
    [Abstract] [Full Text] [Related]

  • 9. N-terminal aromatic residues closely impact the cytolytic activity of cupiennin 1a, a major spider venom peptide.
    Kuhn-Nentwig L, Sheynis T, Kolusheva S, Nentwig W, Jelinek R.
    Toxicon; 2013 Dec 01; 75():177-86. PubMed ID: 23523532
    [Abstract] [Full Text] [Related]

  • 10. Orientational behavior of phospholipid membranes with mastoparan studied by 31P solid state NMR.
    Hori Y, Demura M, Niidome T, Aoyagi H, Asakura T.
    FEBS Lett; 1999 Jul 23; 455(3):228-32. PubMed ID: 10437778
    [Abstract] [Full Text] [Related]

  • 11. Interactions of a synthetic Leu-Lys-rich antimicrobial peptide with phospholipid bilayers.
    Fernandez DI, Sani MA, Gehman JD, Hahm KS, Separovic F.
    Eur Biophys J; 2011 Apr 23; 40(4):471-80. PubMed ID: 21225256
    [Abstract] [Full Text] [Related]

  • 12. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces.
    Clayton JC, Hughes E, Middleton DA.
    Biochemistry; 2005 Dec 27; 44(51):17016-26. PubMed ID: 16363815
    [Abstract] [Full Text] [Related]

  • 13. Mechanism of penetration of Antp(43-58) into membrane bilayers.
    Zhang W, Smith SO.
    Biochemistry; 2005 Aug 02; 44(30):10110-8. PubMed ID: 16042388
    [Abstract] [Full Text] [Related]

  • 14. 31P and 2H relaxation studies of helix VII and the cytoplasmic helix of the human cannabinoid receptors utilizing solid-state NMR techniques.
    Tiburu EK, Karp ES, Birrane G, Struppe JO, Chu S, Lorigan GA, Avraham S, Avraham HK.
    Biochemistry; 2006 Jun 13; 45(23):7356-65. PubMed ID: 16752925
    [Abstract] [Full Text] [Related]

  • 15. Spatial structure and activity mechanism of a novel spider antimicrobial peptide.
    Dubovskii PV, Volynsky PE, Polyansky AA, Chupin VV, Efremov RG, Arseniev AS.
    Biochemistry; 2006 Sep 05; 45(35):10759-67. PubMed ID: 16939228
    [Abstract] [Full Text] [Related]

  • 16. Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR.
    Bodor A, Kövér KE, Mäler L.
    Biochim Biophys Acta; 2015 Mar 05; 1848(3):760-6. PubMed ID: 25497765
    [Abstract] [Full Text] [Related]

  • 17. Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae).
    Kuhn-Nentwig L, Muller J, Schaller J, Walz A, Dathe M, Nentwig W.
    J Biol Chem; 2002 Mar 29; 277(13):11208-16. PubMed ID: 11792701
    [Abstract] [Full Text] [Related]

  • 18. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes.
    Gehman JD, Luc F, Hall K, Lee TH, Boland MP, Pukala TL, Bowie JH, Aguilar MI, Separovic F.
    Biochemistry; 2008 Aug 19; 47(33):8557-65. PubMed ID: 18652483
    [Abstract] [Full Text] [Related]

  • 19. Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes studied by solid state NMR.
    Grage SL, Afonin S, Grüne M, Ulrich AS.
    Chem Phys Lipids; 2004 Nov 19; 132(1):65-77. PubMed ID: 15530449
    [Abstract] [Full Text] [Related]

  • 20. The cell-penetrating peptide TAT(48-60) induces a non-lamellar phase in DMPC membranes.
    Afonin S, Frey A, Bayerl S, Fischer D, Wadhwani P, Weinkauf S, Ulrich AS.
    Chemphyschem; 2006 Oct 13; 7(10):2134-42. PubMed ID: 16986196
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.