These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
196 related items for PubMed ID: 17323319
1. Characterization of a slowly degrading biodegradable polyester-urethane for tissue engineering scaffolds. Henry JA, Simonet M, Pandit A, Neuenschwander P. J Biomed Mater Res A; 2007 Sep 01; 82(3):669-79. PubMed ID: 17323319 [Abstract] [Full Text] [Related]
2. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH, Kim BS, Kim SH, Choi SW, Jeong SI, Kwon IK, Kang SW, Nikolovski J, Mooney DJ, Han YK, Kim YH. J Biomed Mater Res A; 2003 Jul 01; 66(1):29-37. PubMed ID: 12833428 [Abstract] [Full Text] [Related]
4. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization. Li Z, Yang X, Wu L, Chen Z, Lin Y, Xu K, Chen GQ. J Biomater Sci Polym Ed; 2009 Jul 01; 20(9):1179-202. PubMed ID: 19520007 [Abstract] [Full Text] [Related]
5. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate. Shen JY, Pan XY, Lim CH, Chan-Park MB, Zhu X, Beuerman RW. Biomacromolecules; 2007 Feb 01; 8(2):376-85. PubMed ID: 17291060 [Abstract] [Full Text] [Related]
6. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Li X, Loh XJ, Wang K, He C, Li J. Biomacromolecules; 2005 Feb 01; 6(5):2740-7. PubMed ID: 16153114 [Abstract] [Full Text] [Related]
7. Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization. Chen Z, Cheng S, Li Z, Xu K, Chen GQ. J Biomater Sci Polym Ed; 2009 Feb 01; 20(10):1451-71. PubMed ID: 19622282 [Abstract] [Full Text] [Related]
8. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone). Qiu H, Li D, Chen X, Fan K, Ou W, Chen KC, Xu K. J Biomed Mater Res A; 2013 Jan 01; 101(1):75-86. PubMed ID: 22826204 [Abstract] [Full Text] [Related]
11. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration. Jung Y, Kim SH, You HJ, Kim SH, Kim YH, Min BG. J Biomater Sci Polym Ed; 2008 Jan 01; 19(8):1073-85. PubMed ID: 18644232 [Abstract] [Full Text] [Related]
12. Influences of tensile load on in vitro degradation of an electrospun poly(L-lactide-co-glycolide) scaffold. Li P, Feng X, Jia X, Fan Y. Acta Biomater; 2010 Aug 01; 6(8):2991-6. PubMed ID: 20170760 [Abstract] [Full Text] [Related]
13. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Sahoo S, Cho-Hong JG, Siew-Lok T. Biomed Mater; 2007 Sep 01; 2(3):169-73. PubMed ID: 18458468 [Abstract] [Full Text] [Related]
20. Influence of keratocytes and retinal pigment epithelial cells on the mechanical properties of polyester-based tissue engineering micropatterned films. Zorlutuna P, Builles N, Damour O, Elsheikh A, Hasirci V. Biomaterials; 2007 Aug 05; 28(24):3489-96. PubMed ID: 17482673 [Abstract] [Full Text] [Related] Page: [Next] [New Search]