These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 17325004
21. Mg(2+) modulates voltage-dependent activation in ether-à-go-go potassium channels by binding between transmembrane segments S2 and S3. Silverman WR, Tang CY, Mock AF, Huh KB, Papazian DM. J Gen Physiol; 2000 Nov; 116(5):663-78. PubMed ID: 11055995 [Abstract] [Full Text] [Related]
22. Sequential formation of ion pairs during activation of a sodium channel voltage sensor. DeCaen PG, Yarov-Yarovoy V, Sharp EM, Scheuer T, Catterall WA. Proc Natl Acad Sci U S A; 2009 Dec 29; 106(52):22498-503. PubMed ID: 20007787 [Abstract] [Full Text] [Related]
23. Movement and crevices around a sodium channel S3 segment. Nguyen TP, Horn R. J Gen Physiol; 2002 Sep 29; 120(3):419-36. PubMed ID: 12198095 [Abstract] [Full Text] [Related]
24. Molecular dissection of the contribution of negatively and positively charged residues in S2, S3, and S4 to the final membrane topology of the voltage sensor in the K+ channel, KAT1. Sato Y, Sakaguchi M, Goshima S, Nakamura T, Uozumi N. J Biol Chem; 2003 Apr 11; 278(15):13227-34. PubMed ID: 12556517 [Abstract] [Full Text] [Related]
26. Role of hydrophobic and ionic forces in the movement of S4 of the Shaker potassium channel. Elliott DJ, Neale EJ, Munsey TS, Bannister JP, Sivaprasadarao A. Mol Membr Biol; 2012 Dec 11; 29(8):321-32. PubMed ID: 22881396 [Abstract] [Full Text] [Related]
27. Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain. Zhang L, Sato Y, Hessa T, von Heijne G, Lee JK, Kodama I, Sakaguchi M, Uozumi N. Proc Natl Acad Sci U S A; 2007 May 15; 104(20):8263-8. PubMed ID: 17488813 [Abstract] [Full Text] [Related]
28. The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Sheets MF, Kyle JW, Kallen RG, Hanck DA. Biophys J; 1999 Aug 15; 77(2):747-57. PubMed ID: 10423423 [Abstract] [Full Text] [Related]
29. Ion permeation through a voltage- sensitive gating pore in brain sodium channels having voltage sensor mutations. Sokolov S, Scheuer T, Catterall WA. Neuron; 2005 Jul 21; 47(2):183-9. PubMed ID: 16039561 [Abstract] [Full Text] [Related]
34. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Seoh SA, Sigg D, Papazian DM, Bezanilla F. Neuron; 1996 Jun 14; 16(6):1159-67. PubMed ID: 8663992 [Abstract] [Full Text] [Related]
37. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential. Piao HH, Rajakumar D, Kang BE, Kim EH, Baker BJ. J Neurosci; 2015 Jan 07; 35(1):372-85. PubMed ID: 25568129 [Abstract] [Full Text] [Related]
38. The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel. Mishima E, Sato Y, Nanatani K, Hoshi N, Lee JK, Schiller N, von Heijne G, Sakaguchi M, Uozumi N. Biochem J; 2016 Dec 01; 473(23):4361-4372. PubMed ID: 27694387 [Abstract] [Full Text] [Related]
39. [Conserved motifs in voltage sensing proteins]. Wang CH, Xie ZL, Lv JW, Yu ZD, Shao SL. Sheng Li Xue Bao; 2012 Aug 25; 64(4):379-86. PubMed ID: 22907298 [Abstract] [Full Text] [Related]
40. Molecular basis of charge movement in voltage-gated sodium channels. Yang N, George AL, Horn R. Neuron; 1996 Jan 25; 16(1):113-22. PubMed ID: 8562074 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]