These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Impedance-based retinal contact imaging as an aid for the placement of high resolution epiretinal prostheses. Johnson L, Scribner D, Skeath P, Klein R, Ilg D, Perkins K, Helfgott M, Sanders R, Panigrahi D. J Neural Eng; 2007 Mar; 4(1):S17-23. PubMed ID: 17325412 [Abstract] [Full Text] [Related]
3. A new approach towards a minimal invasive retina implant. Gerding H. J Neural Eng; 2007 Mar; 4(1):S30-7. PubMed ID: 17325414 [Abstract] [Full Text] [Related]
4. Perceptual thresholds and electrode impedance in three retinal prosthesis subjects. Mahadevappa M, Weiland JD, Yanai D, Fine I, Greenberg RJ, Humayun MS. IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):201-6. PubMed ID: 16003900 [Abstract] [Full Text] [Related]
5. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Majji AB, Humayun MS, Weiland JD, Suzuki S, D'Anna SA, de Juan E. Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263 [Abstract] [Full Text] [Related]
6. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants. Newbold C, Richardson R, Huang CQ, Milojevic D, Cowan R, Shepherd R. J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642 [Abstract] [Full Text] [Related]
7. Development of an extraocular retinal prosthesis: evaluation of stimulation parameters in the cat. Chowdhury V, Morley JW, Coroneo MT. J Clin Neurosci; 2008 Aug; 15(8):900-6. PubMed ID: 18586497 [Abstract] [Full Text] [Related]
16. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo. Duan YY, Clark GM, Cowan RS. Biomaterials; 2004 Aug; 25(17):3813-28. PubMed ID: 15020157 [Abstract] [Full Text] [Related]