These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


236 related items for PubMed ID: 17326141

  • 1. Comparative in vitro study of the proliferation and growth of human osteoblast-like cells on various biomaterials.
    Itthichaisri C, Wiedmann-Al-Ahmad M, Huebner U, Al-Ahmad A, Schoen R, Schmelzeisen R, Gellrich NC.
    J Biomed Mater Res A; 2007 Sep 15; 82(4):777-87. PubMed ID: 17326141
    [Abstract] [Full Text] [Related]

  • 2. Tissue engineering of composite grafts: Cocultivation of human oral keratinocytes and human osteoblast-like cells on laminin-coated polycarbonate membranes and equine collagen membranes under different culture conditions.
    Glaum R, Wiedmann-Al-Ahmad M, Huebner U, Schmelzeisen R.
    J Biomed Mater Res A; 2010 May 15; 93(2):704-15. PubMed ID: 19609875
    [Abstract] [Full Text] [Related]

  • 3. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering.
    Ni S, Chang J, Chou L.
    J Biomed Mater Res A; 2006 Jan 15; 76(1):196-205. PubMed ID: 16265636
    [Abstract] [Full Text] [Related]

  • 4. Different substitute biomaterials as potential scaffolds in tissue engineering.
    Petrovic L, Schlegel AK, Schultze-Mosgau S, Wiltfang J.
    Int J Oral Maxillofac Implants; 2006 Jan 15; 21(2):225-31. PubMed ID: 16634492
    [Abstract] [Full Text] [Related]

  • 5. [Response of osteoblast cultures to titanium, steel and hydroxyapatite implants].
    Trentz OA, Platz A, Helmy N, Trentz O.
    Swiss Surg; 1998 Jan 15; (4):203-9. PubMed ID: 9757811
    [Abstract] [Full Text] [Related]

  • 6. Bone engineering-vitalisation of alloplastic and allogenic bone grafts by human osteoblast-like cells.
    Hinze MC, Wiedmann-Al-Ahmad M, Glaum R, Gutwald R, Schmelzeisen R, Sauerbier S.
    Br J Oral Maxillofac Surg; 2010 Jul 15; 48(5):369-73. PubMed ID: 19596502
    [Abstract] [Full Text] [Related]

  • 7. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials.
    Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, Bulnheim U, Rychly J, Kirkpatrick CJ.
    Biomaterials; 2007 Sep 15; 28(27):3965-76. PubMed ID: 17582491
    [Abstract] [Full Text] [Related]

  • 8. Hydrodynamic compression of young and adult rat osteoblast-like cells on titanium fiber mesh.
    Walboomers XF, Elder SE, Bumgardner JD, Jansen JA.
    J Biomed Mater Res A; 2006 Jan 15; 76(1):16-24. PubMed ID: 16250009
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Effects of bone morphogenetic protein-7 stimulation on osteoblasts cultured on different biomaterials.
    Açil Y, Springer IN, Broek V, Terheyden H, Jepsen S.
    J Cell Biochem; 2002 Jan 15; 86(1):90-8. PubMed ID: 12112019
    [Abstract] [Full Text] [Related]

  • 12. Comparative in vitro study of the proliferation and growth of ovine osteoblast-like cells on various alloplastic biomaterials manufactured for augmentation and reconstruction of tissue or bone defects.
    Schmitt SC, Wiedmann-Al-Ahmad M, Kuschnierz J, Al-Ahmad A, Huebner U, Schmelzeisen R, Gutwald R.
    J Mater Sci Mater Med; 2008 Mar 15; 19(3):1441-50. PubMed ID: 17914632
    [Abstract] [Full Text] [Related]

  • 13. Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material.
    Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K.
    Biomaterials; 2005 Jun 15; 26(17):3503-9. PubMed ID: 15621240
    [Abstract] [Full Text] [Related]

  • 14. Novel textile chitosan scaffolds promote spreading, proliferation, and differentiation of osteoblasts.
    Heinemann C, Heinemann S, Bernhardt A, Worch H, Hanke T.
    Biomacromolecules; 2008 Oct 15; 9(10):2913-20. PubMed ID: 18771318
    [Abstract] [Full Text] [Related]

  • 15. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium.
    Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA.
    Biomaterials; 2008 Apr 15; 29(11):1563-72. PubMed ID: 18199478
    [Abstract] [Full Text] [Related]

  • 16. The response of osteoblast-like cells towards collagen type I coating immobilized by p-nitrophenylchloroformate to titanium.
    van den Dolder J, Jansen JA.
    J Biomed Mater Res A; 2007 Dec 01; 83(3):712-9. PubMed ID: 17559125
    [Abstract] [Full Text] [Related]

  • 17. The influence of titanium surfaces in cultures of neonatal rat calvarial osteoblast-like cells: an immunohistochemical study.
    Aybar B, Emes Y, Atalay B, Tanrikulu S, Kaya AS, Işsever H, Ceyhan T, Bilir A.
    Implant Dent; 2009 Feb 01; 18(1):75-85. PubMed ID: 19212240
    [Abstract] [Full Text] [Related]

  • 18. Resorbable polymeric scaffolds for bone tissue engineering: the influence of their microstructure on the growth of human osteoblast-like MG 63 cells.
    Pamula E, Filová E, Bacáková L, Lisá V, Adamczyk D.
    J Biomed Mater Res A; 2009 May 01; 89(2):432-43. PubMed ID: 18431773
    [Abstract] [Full Text] [Related]

  • 19. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S.
    Artif Organs; 2008 May 01; 32(5):388-97. PubMed ID: 18471168
    [Abstract] [Full Text] [Related]

  • 20. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds.
    St-Pierre JP, Gauthier M, Lefebvre LP, Tabrizian M.
    Biomaterials; 2005 Dec 01; 26(35):7319-28. PubMed ID: 16000220
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.