These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


448 related items for PubMed ID: 17335064

  • 1. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility.
    Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK.
    Biotechnol Bioeng; 2007 Sep 01; 98(1):112-22. PubMed ID: 17335064
    [Abstract] [Full Text] [Related]

  • 2. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R, Wyman CE.
    Biotechnol Bioeng; 2009 Jun 01; 103(2):252-67. PubMed ID: 19195015
    [Abstract] [Full Text] [Related]

  • 3. Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model.
    O'Dwyer JP, Zhu L, Granda CB, Holtzapple MT.
    Bioresour Technol; 2007 Nov 01; 98(16):2969-77. PubMed ID: 17140790
    [Abstract] [Full Text] [Related]

  • 4. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.
    Kumar R, Mago G, Balan V, Wyman CE.
    Bioresour Technol; 2009 Sep 01; 100(17):3948-62. PubMed ID: 19362819
    [Abstract] [Full Text] [Related]

  • 5. Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy.
    Donohoe BS, Selig MJ, Viamajala S, Vinzant TB, Adney WS, Himmel ME.
    Biotechnol Bioeng; 2009 Jun 15; 103(3):480-9. PubMed ID: 19266575
    [Abstract] [Full Text] [Related]

  • 6. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility.
    Zhu Z, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang YH.
    Biotechnol Bioeng; 2009 Jul 01; 103(4):715-24. PubMed ID: 19337984
    [Abstract] [Full Text] [Related]

  • 7. Cellulose crystallinity--a key predictor of the enzymatic hydrolysis rate.
    Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS.
    FEBS J; 2010 Mar 01; 277(6):1571-82. PubMed ID: 20148968
    [Abstract] [Full Text] [Related]

  • 8. Computational simulations of the Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose Ibeta: the enzyme-substrate complex.
    Zhong L, Matthews JF, Hansen PI, Crowley MF, Cleary JM, Walker RC, Nimlos MR, Brooks CL, Adney WS, Himmel ME, Brady JW.
    Carbohydr Res; 2009 Oct 12; 344(15):1984-92. PubMed ID: 19699474
    [Abstract] [Full Text] [Related]

  • 9. Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments.
    Zhou J, Wang YH, Chu J, Luo LZ, Zhuang YP, Zhang SL.
    Bioresour Technol; 2009 Jan 12; 100(2):819-25. PubMed ID: 18771915
    [Abstract] [Full Text] [Related]

  • 10. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.
    Yang B, Wyman CE.
    Biotechnol Bioeng; 2004 Apr 05; 86(1):88-95. PubMed ID: 15007845
    [Abstract] [Full Text] [Related]

  • 11. Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated lignocellulosic biomass.
    Gao D, Chundawat SP, Uppugundla N, Balan V, Dale BE.
    Biotechnol Bioeng; 2011 Aug 05; 108(8):1788-800. PubMed ID: 21437882
    [Abstract] [Full Text] [Related]

  • 12. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose.
    Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP.
    Biotechnol Bioeng; 2007 Aug 01; 97(5):1028-38. PubMed ID: 17221887
    [Abstract] [Full Text] [Related]

  • 13. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces.
    Szijártó N, Siika-Aho M, Tenkanen M, Alapuranen M, Vehmaanperä J, Réczey K, Viikari L.
    J Biotechnol; 2008 Sep 10; 136(3-4):140-7. PubMed ID: 18635283
    [Abstract] [Full Text] [Related]

  • 14. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover.
    Pribowo A, Arantes V, Saddler JN.
    Enzyme Microb Technol; 2012 Mar 10; 50(3):195-203. PubMed ID: 22305175
    [Abstract] [Full Text] [Related]

  • 15. A functionally based model for hydrolysis of cellulose by fungal cellulase.
    Zhang YH, Lynd LR.
    Biotechnol Bioeng; 2006 Aug 05; 94(5):888-98. PubMed ID: 16685742
    [Abstract] [Full Text] [Related]

  • 16. Impact of surfactants on pretreatment of corn stover.
    Qing Q, Yang B, Wyman CE.
    Bioresour Technol; 2010 Aug 05; 101(15):5941-51. PubMed ID: 20304637
    [Abstract] [Full Text] [Related]

  • 17. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility.
    Chundawat SP, Venkatesh B, Dale BE.
    Biotechnol Bioeng; 2007 Feb 01; 96(2):219-31. PubMed ID: 16903002
    [Abstract] [Full Text] [Related]

  • 18. Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover.
    Ishizawa CI, Davis MF, Schell DF, Johnson DK.
    J Agric Food Chem; 2007 Apr 04; 55(7):2575-81. PubMed ID: 17335219
    [Abstract] [Full Text] [Related]

  • 19. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities.
    Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR.
    Bioresour Technol; 2008 Jul 04; 99(11):4997-5005. PubMed ID: 18006303
    [Abstract] [Full Text] [Related]

  • 20. Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate.
    Gruno M, Väljamäe P, Pettersson G, Johansson G.
    Biotechnol Bioeng; 2004 Jun 05; 86(5):503-11. PubMed ID: 15129433
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.