These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


187 related items for PubMed ID: 17336951

  • 1. Impact of phenolic compounds on hydrothermal oxidation of cellulose.
    Jin F, Cao J, Kishida H, Moriya T, Enomoto H.
    Carbohydr Res; 2007 Jun 11; 342(8):1129-32. PubMed ID: 17336951
    [Abstract] [Full Text] [Related]

  • 2. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds.
    Tymchyshyn M, Xu CC.
    Bioresour Technol; 2010 Apr 11; 101(7):2483-90. PubMed ID: 20031393
    [Abstract] [Full Text] [Related]

  • 3. Oxidation of 4-bromophenol by the recombinant fused protein cellulose-binding domain-horseradish peroxidase immobilized on cellulose.
    Levy I, Ward G, Hadar Y, Shoseyov O, Dosoretz CG.
    Biotechnol Bioeng; 2003 Apr 20; 82(2):223-31. PubMed ID: 12584764
    [Abstract] [Full Text] [Related]

  • 4. Oxidation of synthetic phenolic antioxidants during water chlorination.
    Rodil R, Quintana JB, Cela R.
    J Hazard Mater; 2012 Jan 15; 199-200():73-81. PubMed ID: 22093692
    [Abstract] [Full Text] [Related]

  • 5. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds.
    Zhang S, Zhao X, Niu H, Shi Y, Cai Y, Jiang G.
    J Hazard Mater; 2009 Aug 15; 167(1-3):560-6. PubMed ID: 19201085
    [Abstract] [Full Text] [Related]

  • 6. Study of chemical changes produced in virgin olive oils with different phenolic contents during an accelerated storage treatment.
    Lerma-García MJ, Simó-Alfonso EF, Chiavaro E, Bendini A, Lercker G, Cerretani L.
    J Agric Food Chem; 2009 Sep 09; 57(17):7834-40. PubMed ID: 19681611
    [Abstract] [Full Text] [Related]

  • 7. Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: effect of H2O2 dosage and temperature.
    Santos A, Yustos P, Rodriguez S, Simon E, Garcia-Ochoa F.
    J Hazard Mater; 2007 Jul 31; 146(3):595-601. PubMed ID: 17524556
    [Abstract] [Full Text] [Related]

  • 8. Qualitative investigation on hydrothermal treatment of Hinoki (Chamaecyparis obtusa) bark for production of useful chemicals.
    Quitain AT, Sato N, Daimon H, Fujie K.
    J Agric Food Chem; 2003 Dec 31; 51(27):7926-9. PubMed ID: 14690375
    [Abstract] [Full Text] [Related]

  • 9. Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3-enriched oil-in-water emulsions.
    Sørensen AD, Haahr AM, Becker EM, Skibsted LH, Bergenståhl B, Nilsson L, Jacobsen C.
    J Agric Food Chem; 2008 Mar 12; 56(5):1740-50. PubMed ID: 18271542
    [Abstract] [Full Text] [Related]

  • 10. Effect of phenolic compounds on the formation of alpha-aminoadipic and gamma-glutamic semialdehydes from myofibrillar proteins oxidized by copper, iron, and myoglobin.
    Estévez M, Heinonen M.
    J Agric Food Chem; 2010 Apr 14; 58(7):4448-55. PubMed ID: 20196602
    [Abstract] [Full Text] [Related]

  • 11. Evaluation of the influence of thermal oxidation on the phenolic composition and on the antioxidant activity of extra-virgin olive oils.
    Carrasco-Pancorbo A, Cerretani L, Bendini A, Segura-Carretero A, Lercker G, Fernández-Gutiérrez A.
    J Agric Food Chem; 2007 Jun 13; 55(12):4771-80. PubMed ID: 17497881
    [Abstract] [Full Text] [Related]

  • 12. Phenols from pyrolysis and co-pyrolysis of tobacco biomass components.
    Kibet JK, Khachatryan L, Dellinger B.
    Chemosphere; 2015 Nov 13; 138():259-65. PubMed ID: 26091866
    [Abstract] [Full Text] [Related]

  • 13. Enzymatic and spectroscopic studies on the activation or inhibition effects by substituted phenolic compounds in the oxidation of aryldiamines and catechols catalyzed by Rhus vernicifera laccase.
    Casella L, Gullotti M, Monzani E, Santagostini L, Zoppellaro G, Sakurai T.
    J Inorg Biochem; 2006 Dec 13; 100(12):2127-39. PubMed ID: 16959319
    [Abstract] [Full Text] [Related]

  • 14. Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw.
    Thomsen MH, Thygesen A, Thomsen AB.
    Appl Microbiol Biotechnol; 2009 Jun 13; 83(3):447-55. PubMed ID: 19194701
    [Abstract] [Full Text] [Related]

  • 15. Intermediate distributions and primary yields of phenolic products in nitrobenzene degradation by Fenton's reagent.
    Carlos L, Fabbri D, Capparelli AL, Prevot AB, Pramauro E, Einschlag FS.
    Chemosphere; 2008 Jun 13; 72(6):952-8. PubMed ID: 18472136
    [Abstract] [Full Text] [Related]

  • 16. Sterically hindered phenols in negative ion mobility spectrometry-mass spectrometry.
    Laakia J, Pedersen CS, Adamov A, Viidanoja J, Sysoev A, Kotiaho T.
    Rapid Commun Mass Spectrom; 2009 Oct 13; 23(19):3069-76. PubMed ID: 19705380
    [Abstract] [Full Text] [Related]

  • 17. Oxidative transformation of natural and synthetic phenolic mixtures by Trametes versicolor laccase.
    Canfora L, Iamarino G, Rao MA, Gianfreda L.
    J Agric Food Chem; 2008 Feb 27; 56(4):1398-407. PubMed ID: 18205305
    [Abstract] [Full Text] [Related]

  • 18. Gas chromatography/mass spectrometric characterisation of pyrolysis/silylation products of glucose and cellulose.
    Fabbri D, Chiavari G, Prati S, Vassura I, Vangelista M.
    Rapid Commun Mass Spectrom; 2002 Feb 27; 16(24):2349-55. PubMed ID: 12478581
    [Abstract] [Full Text] [Related]

  • 19. Solid acid-catalyzed cellulose hydrolysis monitored by in situ ATR-IR spectroscopy.
    Zakzeski J, Grisel RJ, Smit AT, Weckhuysen BM.
    ChemSusChem; 2012 Feb 13; 5(2):430-7. PubMed ID: 22315193
    [Abstract] [Full Text] [Related]

  • 20. Detailed examination of the degradation of phenol derivatives under oxygen delignification conditions.
    Yokoyama T, Matsumoto Y, Meshitsuka G.
    J Agric Food Chem; 2007 Feb 21; 55(4):1301-7. PubMed ID: 17300151
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.