These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


190 related items for PubMed ID: 17337537

  • 1. Considerations when using discriminant function analysis of antimicrobial resistance profiles to identify sources of fecal contamination of surface water in Michigan.
    Kaneene JB, Miller R, Sayah R, Johnson YJ, Gilliland D, Gardiner JC.
    Appl Environ Microbiol; 2007 May; 73(9):2878-90. PubMed ID: 17337537
    [Abstract] [Full Text] [Related]

  • 2. Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water.
    Sayah RS, Kaneene JB, Johnson Y, Miller R.
    Appl Environ Microbiol; 2005 Mar; 71(3):1394-404. PubMed ID: 15746342
    [Abstract] [Full Text] [Related]

  • 3. Differentiation of faecal Escherichia coli from humans and animals by multiple antibiotic resistance analysis.
    Vantarakis A, Venieri D, Komninou G, Papapetropoulou M.
    Lett Appl Microbiol; 2006 Jan; 42(1):71-7. PubMed ID: 16411923
    [Abstract] [Full Text] [Related]

  • 4. Novel application of a statistical technique, Random Forests, in a bacterial source tracking study.
    Smith A, Sterba-Boatwright B, Mott J.
    Water Res; 2010 Jul; 44(14):4067-76. PubMed ID: 20566209
    [Abstract] [Full Text] [Related]

  • 5. Sourcing faecal pollution from onsite wastewater treatment systems in surface waters using antibiotic resistance analysis.
    Carroll S, Hargreaves M, Goonetilleke A.
    J Appl Microbiol; 2005 Jul; 99(3):471-82. PubMed ID: 16108788
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of antibiotic resistance analysis and ribotyping for identification of faecal pollution sources in an urban watershed.
    Moore DF, Harwood VJ, Ferguson DM, Lukasik J, Hannah P, Getrich M, Brownell M.
    J Appl Microbiol; 2005 Jul; 99(3):618-28. PubMed ID: 16108804
    [Abstract] [Full Text] [Related]

  • 7. Phenotypic characterization of Escherichia coli through whole-cell fatty acid profiling to investigate host specificity.
    Haznedaroglu BZ, Yurtsever D, Lefkowitz JR, Duran M.
    Water Res; 2007 Feb; 41(4):803-9. PubMed ID: 17234236
    [Abstract] [Full Text] [Related]

  • 8. Faecal pollution source identification in an urbanizing catchment using antibiotic resistance profiling, discriminant analysis and partial least squares regression.
    Carroll SP, Dawes L, Hargreaves M, Goonetilleke A.
    Water Res; 2009 Mar; 43(5):1237-46. PubMed ID: 19168199
    [Abstract] [Full Text] [Related]

  • 9. Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets.
    Costa D, Poeta P, Sáenz Y, Coelho AC, Matos M, Vinué L, Rodrigues J, Torres C.
    Vet Microbiol; 2008 Feb 05; 127(1-2):97-105. PubMed ID: 17870255
    [Abstract] [Full Text] [Related]

  • 10. Effects of feeding wet corn distillers grains with solubles with or without monensin and tylosin on the prevalence and antimicrobial susceptibilities of fecal foodborne pathogenic and commensal bacteria in feedlot cattle.
    Jacob ME, Fox JT, Narayanan SK, Drouillard JS, Renter DG, Nagaraja TG.
    J Anim Sci; 2008 May 05; 86(5):1182-90. PubMed ID: 18192558
    [Abstract] [Full Text] [Related]

  • 11. Phenotypic library-based microbial source tracking methods: efficacy in the California collaborative study.
    Harwood VJ, Wiggins B, Hagedorn C, Ellender RD, Gooch J, Kern J, Samadpour M, Chapman AC, Robinson BJ, Thompson BC.
    J Water Health; 2003 Dec 05; 1(4):153-66. PubMed ID: 15382721
    [Abstract] [Full Text] [Related]

  • 12. Choice of indicator organism and library size considerations for phenotypic microbial source tracking by FAME profiling.
    Duran M, Yurtsever D, Dunaev T.
    Water Sci Technol; 2009 Dec 05; 60(10):2659-68. PubMed ID: 19923772
    [Abstract] [Full Text] [Related]

  • 13. Susceptibility of Escherichia coli from growing piglets receiving antimicrobial feed additives.
    Kim LM, Gray JT, Harmon BG, Jones RD, Fedorka-Cray PJ.
    Foodborne Pathog Dis; 2005 Dec 05; 2(4):304-16. PubMed ID: 16366853
    [Abstract] [Full Text] [Related]

  • 14. Occurrence of antibiotic resistance in Escherichia coli from surface waters and fecal pollution sources near Hamilton, Ontario.
    Edge TA, Hill S.
    Can J Microbiol; 2005 Jun 05; 51(6):501-5. PubMed ID: 16121229
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Fidelity of bacterial source tracking: Escherichia coli vs Enterococcus spp and minimizing assignment of isolates from nonlibrary sources.
    Hassan WM, Ellender RD, Wang SY.
    J Appl Microbiol; 2007 Feb 05; 102(2):591-8. PubMed ID: 17241366
    [Abstract] [Full Text] [Related]

  • 19. Antimicrobial drug resistance of fecal Escherichia coli and Salmonella spp. isolates from United States dairy cows.
    Lundin JI, Dargatz DA, Wagner BA, Lombard JE, Hill AE, Ladely SR, Fedorka-Cray PJ.
    Foodborne Pathog Dis; 2008 Feb 05; 5(1):7-19. PubMed ID: 18260811
    [Abstract] [Full Text] [Related]

  • 20. Prevalence and pattern of antimicrobial susceptibility in Escherichia coli isolated from pigs reared under antimicrobial-free and conventional production methods.
    Bunner CA, Norby B, Bartlett PC, Erskine RJ, Downes FP, Kaneene JB.
    J Am Vet Med Assoc; 2007 Jul 15; 231(2):275-83. PubMed ID: 17630898
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.