These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. btn1, the Schizosaccharomyces pombe homologue of the human Batten disease gene CLN3, regulates vacuole homeostasis. Gachet Y, Codlin S, Hyams JS, Mole SE. J Cell Sci; 2005 Dec 01; 118(Pt 23):5525-36. PubMed ID: 16291725 [Abstract] [Full Text] [Related]
6. A role in vacuolar arginine transport for yeast Btn1p and for human CLN3, the protein defective in Batten disease. Kim Y, Ramirez-Montealegre D, Pearce DA. Proc Natl Acad Sci U S A; 2003 Dec 23; 100(26):15458-62. PubMed ID: 14660799 [Abstract] [Full Text] [Related]
7. The subcellular location of the yeast Saccharomyces cerevisiae homologue of the protein defective in the juvenile form of Batten disease. Croopnick JB, Choi HC, Mueller DM. Biochem Biophys Res Commun; 1998 Sep 18; 250(2):335-41. PubMed ID: 9753630 [Abstract] [Full Text] [Related]
8. Studies of pH regulation by Btn1p, the yeast homolog of human Cln3p. Pearce DA, Nosel SA, Sherman F. Mol Genet Metab; 1999 Apr 18; 66(4):320-3. PubMed ID: 10191121 [Abstract] [Full Text] [Related]
10. Altered arginine metabolism in the central nervous system (CNS) of the Cln3-/- mouse model of juvenile Batten disease. Chan CH, Ramirez-Montealegre D, Pearce DA. Neuropathol Appl Neurobiol; 2009 Apr 18; 35(2):189-207. PubMed ID: 19284480 [Abstract] [Full Text] [Related]
11. Phenotypic reversal of the btn1 defects in yeast by chloroquine: a yeast model for Batten disease. Pearce DA, Carr CJ, Das B, Sherman F. Proc Natl Acad Sci U S A; 1999 Sep 28; 96(20):11341-5. PubMed ID: 10500178 [Abstract] [Full Text] [Related]
15. pH-dependent localization of Btn1p in the yeast model for Batten disease. Wolfe DM, Padilla-Lopez S, Vitiello SP, Pearce DA. Dis Model Mech; 2011 Jan 14; 4(1):120-5. PubMed ID: 20959629 [Abstract] [Full Text] [Related]
16. BTN1, a yeast gene corresponding to the human gene responsible for Batten's disease, is not essential for viability, mitochondrial function, or degradation of mitochondrial ATP synthase. Pearce DA, Sherman F. Yeast; 1997 Jun 30; 13(8):691-7. PubMed ID: 9219333 [Abstract] [Full Text] [Related]
17. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae. Pascual-Ahuir A, Serrano R, Proft M. Mol Cell Biol; 2001 Jan 30; 21(1):16-25. PubMed ID: 11113177 [Abstract] [Full Text] [Related]
18. Nitric oxide signaling is disrupted in the yeast model for Batten disease. Osório NS, Carvalho A, Almeida AJ, Padilla-Lopez S, Leão C, Laranjinha J, Ludovico P, Pearce DA, Rodrigues F. Mol Biol Cell; 2007 Jul 30; 18(7):2755-67. PubMed ID: 17475770 [Abstract] [Full Text] [Related]
19. Deletion of btn1, an orthologue of CLN3, increases glycolysis and perturbs amino acid metabolism in the fission yeast model of Batten disease. Pears MR, Codlin S, Haines RL, White IJ, Mortishire-Smith RJ, Mole SE, Griffin JL. Mol Biosyst; 2010 Jun 30; 6(6):1093-102. PubMed ID: 20485751 [Abstract] [Full Text] [Related]
20. Batten disease: evaluation of CLN3 mutations on protein localization and function. Haskell RE, Carr CJ, Pearce DA, Bennett MJ, Davidson BL. Hum Mol Genet; 2000 Mar 22; 9(5):735-44. PubMed ID: 10749980 [Abstract] [Full Text] [Related] Page: [Next] [New Search]