These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
197 related items for PubMed ID: 17341812
1. Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses. Hagiwara D, Matsubayashi Y, Marui J, Furukawa K, Yamashino T, Kanamaru K, Kato M, Abe K, Kobayashi T, Mizuno T. Biosci Biotechnol Biochem; 2007 Mar; 71(3):844-7. PubMed ID: 17341812 [Abstract] [Full Text] [Related]
2. Characterization of NikA histidine kinase and two response regulators with special reference to osmotic adaptation and asexual development in Aspergillus nidulans. Hagiwara D, Mizuno T, Abe K. Biosci Biotechnol Biochem; 2009 Jul; 73(7):1566-71. PubMed ID: 19584543 [Abstract] [Full Text] [Related]
3. Transcriptional profiling for Aspergillusnidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress. Hagiwara D, Asano Y, Marui J, Yoshimi A, Mizuno T, Abe K. Fungal Genet Biol; 2009 Nov; 46(11):868-78. PubMed ID: 19596074 [Abstract] [Full Text] [Related]
4. Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus. Izumitsu K, Yoshimi A, Tanaka C. Eukaryot Cell; 2007 Feb; 6(2):171-81. PubMed ID: 17158737 [Abstract] [Full Text] [Related]
13. Binding Mode and Molecular Mechanism of the Two-Component Histidine Kinase Bos1 of Botrytis cinerea to Fludioxonil and Iprodione. Yin X, Li P, Wang Z, Wang J, Fang A, Tian B, Yang Y, Yu Y, Bi C. Phytopathology; 2024 Apr; 114(4):770-779. PubMed ID: 38598410 [Abstract] [Full Text] [Related]
14. The SskA and SrrA response regulators are implicated in oxidative stress responses of hyphae and asexual spores in the phosphorelay signaling network of Aspergillus nidulans. Hagiwara D, Asano Y, Marui J, Furukawa K, Kanamaru K, Kato M, Abe K, Kobayashi T, Yamashino T, Mizuno T. Biosci Biotechnol Biochem; 2007 Apr; 71(4):1003-14. PubMed ID: 17420584 [Abstract] [Full Text] [Related]
16. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Hu J, Zhou Y, Gao T, Geng J, Dai Y, Ren H, Lamour K, Liu X. Pestic Biochem Physiol; 2019 May; 156():123-128. PubMed ID: 31027571 [Abstract] [Full Text] [Related]
17. In vitro analysis of His-Asp phosphorelays in Aspergillus nidulans: the first direct biochemical evidence for the existence of His-Asp phosphotransfer systems in filamentous fungi. Azuma N, Kanamaru K, Matsushika A, Yamashino T, Mizuno T, Kato M, Kobayashi T. Biosci Biotechnol Biochem; 2007 Oct; 71(10):2493-502. PubMed ID: 17928704 [Abstract] [Full Text] [Related]
20. Resistance to fludioxonil in Botrytis cinerea isolates from blackberry and strawberry. Li X, Fernández-Ortuño D, Grabke A, Schnabel G. Phytopathology; 2014 Jul; 104(7):724-32. PubMed ID: 24423402 [Abstract] [Full Text] [Related] Page: [Next] [New Search]