These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 17344378

  • 1. A novel effect of cochlear efferents: in vivo response enhancement does not require alpha9 cholinergic receptors.
    Maison SF, Vetter DE, Liberman MC.
    J Neurophysiol; 2007 May; 97(5):3269-78. PubMed ID: 17344378
    [Abstract] [Full Text] [Related]

  • 2. Role of alpha9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation.
    Vetter DE, Liberman MC, Mann J, Barhanin J, Boulter J, Brown MC, Saffiote-Kolman J, Heinemann SF, Elgoyhen AB.
    Neuron; 1999 May; 23(1):93-103. PubMed ID: 10402196
    [Abstract] [Full Text] [Related]

  • 3. A nicotinic-like receptor mediates suppression of distortion product otoacoustic emissions by contralateral sound.
    Kujawa SG, Glattke TJ, Fallon M, Bobbin RP.
    Hear Res; 1994 Apr; 74(1-2):122-34. PubMed ID: 8040083
    [Abstract] [Full Text] [Related]

  • 4. Isoflurane increases amplitude and incidence of evoked and spontaneous otoacoustic emissions.
    Drexl M, Henke J, Kössl M.
    Hear Res; 2004 Aug; 194(1-2):135-42. PubMed ID: 15276684
    [Abstract] [Full Text] [Related]

  • 5. Assessment of the expression and role of the α1-nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea.
    Roux I, Wu JS, McIntosh JM, Glowatzki E.
    J Neurophysiol; 2016 Aug 01; 116(2):479-92. PubMed ID: 27098031
    [Abstract] [Full Text] [Related]

  • 6. The effects of efferent activation on the acoustically and electrically evoked otoacoustic emission.
    Ota Y, Dolan DF.
    Hear Res; 2000 Oct 01; 148(1-2):124-36. PubMed ID: 10978830
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A novel cholinergic "slow effect" of efferent stimulation on cochlear potentials in the guinea pig.
    Sridhar TS, Liberman MC, Brown MC, Sewell WF.
    J Neurosci; 1995 May 01; 15(5 Pt 1):3667-78. PubMed ID: 7751937
    [Abstract] [Full Text] [Related]

  • 9. Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea.
    Roux I, Wersinger E, McIntosh JM, Fuchs PA, Glowatzki E.
    J Neurosci; 2011 Oct 19; 31(42):15092-101. PubMed ID: 22016543
    [Abstract] [Full Text] [Related]

  • 10. Unraveling the Molecular Players at the Cholinergic Efferent Synapse of the Zebrafish Lateral Line.
    Carpaneto Freixas AE, Moglie MJ, Castagnola T, Salatino L, Domene S, Marcovich I, Gallino S, Wedemeyer C, Goutman JD, Plazas PV, Elgoyhen AB.
    J Neurosci; 2021 Jan 06; 41(1):47-60. PubMed ID: 33203744
    [Abstract] [Full Text] [Related]

  • 11. Overexpression of SK2 channels enhances efferent suppression of cochlear responses without enhancing noise resistance.
    Maison SF, Parker LL, Young L, Adelman JP, Zuo J, Liberman MC.
    J Neurophysiol; 2007 Apr 06; 97(4):2930-6. PubMed ID: 17267753
    [Abstract] [Full Text] [Related]

  • 12. Inferior colliculus stimulation causes similar efferent effects on ipsilateral and contralateral cochlear potentials in the guinea pig.
    Zhang W, Dolan DF.
    Brain Res; 2006 Apr 07; 1081(1):138-49. PubMed ID: 16500626
    [Abstract] [Full Text] [Related]

  • 13. Efferent protection from acoustic injury is mediated via alpha9 nicotinic acetylcholine receptors on outer hair cells.
    Maison SF, Luebke AE, Liberman MC, Zuo J.
    J Neurosci; 2002 Dec 15; 22(24):10838-46. PubMed ID: 12486177
    [Abstract] [Full Text] [Related]

  • 14. Latency of contralateral sound-evoked auditory efferent suppression of otoacoustic emissions.
    Hill JC, Prasher DK, Luxon LM.
    Acta Otolaryngol; 1997 May 15; 117(3):343-51. PubMed ID: 9199519
    [Abstract] [Full Text] [Related]

  • 15. A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection.
    Taranda J, Maison SF, Ballestero JA, Katz E, Savino J, Vetter DE, Boulter J, Liberman MC, Fuchs PA, Elgoyhen AB.
    PLoS Biol; 2009 Jan 20; 7(1):e18. PubMed ID: 19166271
    [Abstract] [Full Text] [Related]

  • 16. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.
    Poppi LA, Tabatabaee H, Drury HR, Jobling P, Callister RJ, Migliaccio AA, Jordan PM, Holt JC, Rabbitt RD, Lim R, Brichta AM.
    J Neurophysiol; 2018 Jan 01; 119(1):312-325. PubMed ID: 28978760
    [Abstract] [Full Text] [Related]

  • 17. Efferent feedback slows cochlear aging.
    Liberman MC, Liberman LD, Maison SF.
    J Neurosci; 2014 Mar 26; 34(13):4599-607. PubMed ID: 24672005
    [Abstract] [Full Text] [Related]

  • 18. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state?
    Abel C, Wittekindt A, Kössl M.
    J Neurophysiol; 2009 May 26; 101(5):2362-71. PubMed ID: 19279155
    [Abstract] [Full Text] [Related]

  • 19. The alpha10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system.
    Vetter DE, Katz E, Maison SF, Taranda J, Turcan S, Ballestero J, Liberman MC, Elgoyhen AB, Boulter J.
    Proc Natl Acad Sci U S A; 2007 Dec 18; 104(51):20594-9. PubMed ID: 18077337
    [Abstract] [Full Text] [Related]

  • 20. The efferent-mediated suppression of otoacoustic emissions in awake guinea pigs and its reversible blockage by gentamicin.
    Avan P, Erre JP, da Costa DL, Aran JM, Popelár J.
    Exp Brain Res; 1996 Apr 18; 109(1):9-16. PubMed ID: 8740203
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.