These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 17346735
21. Analysis of traveling-wave electro-osmotic pumping with double-sided electrode arrays. Yeh HC, Yang RJ, Luo WJ. Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056326. PubMed ID: 21728666 [Abstract] [Full Text] [Related]
22. Numerical prediction of ac electro-osmotic flows around polarized electrodes. Suh YK, Kang S. Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046309. PubMed ID: 19518335 [Abstract] [Full Text] [Related]
23. Microfluidic analogy of the wheatstone bridge for systematic investigations of electro-osmotic flows. Plecis A, Chen Y. Anal Chem; 2008 May 15; 80(10):3736-42. PubMed ID: 18407672 [Abstract] [Full Text] [Related]
24. Formation of vortices near abrupt nano-channel height changes in electro-osmotic flow of aqueous solutions. Ramirez JC, Conlisk AT. Biomed Microdevices; 2006 Dec 15; 8(4):325-30. PubMed ID: 16917661 [Abstract] [Full Text] [Related]
25. Self-consistent field theory study of the effect of grafting density on the height of a weak polyelectrolyte brush. Witte KN, Kim S, Won YY. J Phys Chem B; 2009 Aug 13; 113(32):11076-84. PubMed ID: 19610619 [Abstract] [Full Text] [Related]
26. Microfluidic flow transducer based on the measurement of electrical admittance. Collins J, Lee AP. Lab Chip; 2004 Feb 13; 4(1):7-10. PubMed ID: 15007432 [Abstract] [Full Text] [Related]
27. Thin film electro-osmotic pumps for biomicrofluidic applications. Edwards JM, Hamblin MN, Fuentes HV, Peeni BA, Lee ML, Woolley AT, Hawkins AR. Biomicrofluidics; 2007 Jan 01; 1(1):14101. PubMed ID: 19693350 [Abstract] [Full Text] [Related]
28. Zig-zag arrangement of four electrodes for ac electro-osmotic micropumps. Hrdlička J, Cervenka P, Přibyl M, Snita D. Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul 01; 84(1 Pt 2):016307. PubMed ID: 21867304 [Abstract] [Full Text] [Related]
29. Electrochemical determination of flow velocity profile in a microfluidic channel from steady-state currents: numerical approach and optimization of electrode layout. Amatore C, Klymenko OV, Oleinick AI, Svir I. Anal Chem; 2009 Sep 15; 81(18):7667-76. PubMed ID: 19697937 [Abstract] [Full Text] [Related]
30. An AC electroosmotic micropump for circular chromatographic applications. Debesset S, Hayden CJ, Dalton C, Eijkel JC, Manz A. Lab Chip; 2004 Aug 15; 4(4):396-400. PubMed ID: 15269811 [Abstract] [Full Text] [Related]
31. Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump. Gregersen MM, Olesen LH, Brask A, Hansen MF, Bruus H. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov 15; 76(5 Pt 2):056305. PubMed ID: 18233754 [Abstract] [Full Text] [Related]
32. Steric effects on ac electro-osmosis in dilute electrolytes. Storey BD, Edwards LR, Kilic MS, Bazant MZ. Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar 15; 77(3 Pt 2):036317. PubMed ID: 18517521 [Abstract] [Full Text] [Related]
33. An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. Bhatt KH, Grego S, Velev OD. Langmuir; 2005 Jul 05; 21(14):6603-12. PubMed ID: 15982074 [Abstract] [Full Text] [Related]
34. A lattice Boltzmann algorithm for electro-osmotic flows in microfluidic devices. Guo Z, Zhao TS, Shi Y. J Chem Phys; 2005 Apr 08; 122(14):144907. PubMed ID: 15847565 [Abstract] [Full Text] [Related]
35. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects. Yan D, Yang C, Miao J, Lam Y, Huang X. Electrophoresis; 2009 Sep 08; 30(18):3144-52. PubMed ID: 19764063 [Abstract] [Full Text] [Related]
36. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC, Mey T, Koster S, Verpoorte E. Lab Chip; 2009 Jul 07; 9(13):1914-25. PubMed ID: 19532967 [Abstract] [Full Text] [Related]
37. A microfluidic fuel cell with flow-through porous electrodes. Kjeang E, Michel R, Harrington DA, Djilali N, Sinton D. J Am Chem Soc; 2008 Mar 26; 130(12):4000-6. PubMed ID: 18314983 [Abstract] [Full Text] [Related]
38. Numerical modeling of self-propagating polymerization fronts: The role of kinetics on front stability. Solovyov SE, Ilyashenko VM, Pojman JA. Chaos; 1997 Jun 26; 7(2):331-340. PubMed ID: 12779660 [Abstract] [Full Text] [Related]
39. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry: concept, theory, and validation. Amatore C, Oleinick A, Klymenko OV, Svir I. Chemphyschem; 2005 Aug 12; 6(8):1581-9. PubMed ID: 16082662 [Abstract] [Full Text] [Related]
40. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Ramos A, González A, Castellanos A, Green NG, Morgan H. Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May 12; 67(5 Pt 2):056302. PubMed ID: 12786267 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]