These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 17352427

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions.
    Pisabarro MT, Serrano L, Wilmanns M.
    J Mol Biol; 1998 Aug 21; 281(3):513-21. PubMed ID: 9698566
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications.
    Polverini E, Rangaraj G, Libich DS, Boggs JM, Harauz G.
    Biochemistry; 2008 Jan 08; 47(1):267-82. PubMed ID: 18067320
    [Abstract] [Full Text] [Related]

  • 6. Crystallization by capillary counter-diffusion and structure determination of the N114A mutant of the SH3 domain of Abl tyrosine kinase complexed with a high-affinity peptide ligand.
    Cámara-Artigas A, Palencia A, Martínez JC, Luque I, Gavira JA, García-Ruiz JM.
    Acta Crystallogr D Biol Crystallogr; 2007 May 08; 63(Pt 5):646-52. PubMed ID: 17452790
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase.
    Nagar B, Hantschel O, Seeliger M, Davies JM, Weis WI, Superti-Furga G, Kuriyan J.
    Mol Cell; 2006 Mar 17; 21(6):787-98. PubMed ID: 16543148
    [Abstract] [Full Text] [Related]

  • 9. Modelling of the ABL and ARG proteins predicts two functionally critical regions that are natively unfolded.
    Buffa P, Manzella L, Consoli ML, Messina A, Vigneri P.
    Proteins; 2007 Apr 01; 67(1):1-11. PubMed ID: 17211892
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Monitoring the interference of protein-protein interactions in vivo by bimolecular fluorescence complementation: the DnaK case.
    Morell M, Czihal P, Hoffmann R, Otvos L, Avilés FX, Ventura S.
    Proteomics; 2008 Sep 01; 8(17):3433-42. PubMed ID: 18686297
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Bimolecular fluorescence complementation analysis of cytochrome p450 2c2, 2e1, and NADPH-cytochrome p450 reductase molecular interactions in living cells.
    Ozalp C, Szczesna-Skorupa E, Kemper B.
    Drug Metab Dispos; 2005 Sep 01; 33(9):1382-90. PubMed ID: 15980100
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Visualizing protein interactions by bimolecular fluorescence complementation in Xenopus.
    Saka Y, Hagemann AI, Smith JC.
    Methods; 2008 Jul 01; 45(3):192-5. PubMed ID: 18586100
    [Abstract] [Full Text] [Related]

  • 19. [Design and structural and thermodynamic studies of a chimeric protein derived from spectrin SH3-domain].
    Gushchina LV, Gabdulkhakov AG, Filimonov VV.
    Mol Biol (Mosk); 2009 Jul 01; 43(3):483-91. PubMed ID: 19548534
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.