These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization. Rathke F, Schmidt S, Schnörr C. Med Image Anal; 2014 Jul; 18(5):781-94. PubMed ID: 24835184 [Abstract] [Full Text] [Related]
5. Incorporation of regional information in optimal 3-D graph search with application for intraretinal layer segmentation of optical coherence tomography images. Haeker M, Wu X, Abràmoff M, Kardon R, Sonka M. Inf Process Med Imaging; 2007 Jul; 20():607-18. PubMed ID: 17633733 [Abstract] [Full Text] [Related]
6. Use of varying constraints in optimal 3-D graph search for segmentation of macular optical coherence tomography images. Haeker M, Abràmoff MD, Wu X, Kardon R, Sonka M. Med Image Comput Comput Assist Interv; 2007 Jul; 10(Pt 1):244-51. PubMed ID: 18051065 [Abstract] [Full Text] [Related]
7. Improving image segmentation performance and quantitative analysis via a computer-aided grading methodology for optical coherence tomography retinal image analysis. Debuc DC, Salinas HM, Ranganathan S, Tátrai E, Gao W, Shen M, Wang J, Somfai GM, Puliafito CA. J Biomed Opt; 2010 Jul; 15(4):046015. PubMed ID: 20799817 [Abstract] [Full Text] [Related]
9. Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography. Novosel J, Thepass G, Lemij HG, de Boer JF, Vermeer KA, van Vliet LJ. Med Image Anal; 2015 Dec; 26(1):146-58. PubMed ID: 26401595 [Abstract] [Full Text] [Related]
10. An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis. Kafieh R, Rabbani H, Hajizadeh F, Ommani M. IEEE Trans Biomed Eng; 2013 Oct; 60(10):2815-23. PubMed ID: 23722446 [Abstract] [Full Text] [Related]
11. Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets. Zawadzki RJ, Fuller AR, Wiley DF, Hamann B, Choi SS, Werner JS. J Biomed Opt; 2007 Oct; 12(4):041206. PubMed ID: 17867795 [Abstract] [Full Text] [Related]
13. Intra-retinal layer segmentation in optical coherence tomography images. Mishra A, Wong A, Bizheva K, Clausi DA. Opt Express; 2009 Dec 21; 17(26):23719-28. PubMed ID: 20052083 [Abstract] [Full Text] [Related]
14. Automated segmentation of the macula by optical coherence tomography. Fabritius T, Makita S, Miura M, Myllylä R, Yasuno Y. Opt Express; 2009 Aug 31; 17(18):15659-69. PubMed ID: 19724565 [Abstract] [Full Text] [Related]
15. User-guided segmentation for volumetric retinal optical coherence tomography images. Yin X, Chao JR, Wang RK. J Biomed Opt; 2014 Aug 31; 19(8):086020. PubMed ID: 25147962 [Abstract] [Full Text] [Related]
19. Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula. Quellec G, Lee K, Dolejsi M, Garvin MK, Abràmoff MD, Sonka M. IEEE Trans Med Imaging; 2010 Jun 31; 29(6):1321-30. PubMed ID: 20363675 [Abstract] [Full Text] [Related]
20. Evaluation of 3-D shape reconstruction of retinal fundus. Choe TE, Cohen I, Medioni G, Walsh AC, Sadda SR. Med Image Comput Comput Assist Interv; 2006 Jun 31; 9(Pt 1):134-41. PubMed ID: 17354883 [Abstract] [Full Text] [Related] Page: [Next] [New Search]