These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 17360611
1. Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PM, Einsle O. Proc Natl Acad Sci U S A; 2007 Feb 27; 104(9):3073-7. PubMed ID: 17360611 [Abstract] [Full Text] [Related]
2. Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site. Kroneck PM. J Biol Inorg Chem; 2016 Mar 27; 21(1):29-38. PubMed ID: 26790879 [Abstract] [Full Text] [Related]
3. Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase. Tenbrink F, Schink B, Kroneck PM. J Bacteriol; 2011 Mar 27; 193(5):1229-36. PubMed ID: 21193613 [Abstract] [Full Text] [Related]
4. Living on acetylene. A primordial energy source. Ten Brink F. Met Ions Life Sci; 2014 Mar 27; 14():15-35. PubMed ID: 25416389 [Abstract] [Full Text] [Related]
5. Acetylene hydratase of Pelobacter acetylenicus. Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme. Meckenstock RU, Krieger R, Ensign S, Kroneck PM, Schink B. Eur J Biochem; 1999 Aug 27; 264(1):176-82. PubMed ID: 10447686 [Abstract] [Full Text] [Related]
6. Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations. Liao RZ, Yu JG, Himo F. Proc Natl Acad Sci U S A; 2010 Dec 28; 107(52):22523-7. PubMed ID: 21149684 [Abstract] [Full Text] [Related]
7. Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase. Boll M, Einsle O, Ermler U, Kroneck PM, Ullmann GM. J Mol Microbiol Biotechnol; 2016 Dec 28; 26(1-3):119-37. PubMed ID: 26959374 [Abstract] [Full Text] [Related]
8. Crystallization and preliminary X-ray analysis of the tungsten-dependent acetylene hydratase from Pelobacter acetylenicus. Einsle O, Niessen H, Abt DJ, Seiffert G, Schink B, Huber R, Messerschmidt A, Kroneck PM. Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Mar 01; 61(Pt 3):299-301. PubMed ID: 16511024 [Abstract] [Full Text] [Related]
9. Theoretical investigation of the first-shell mechanism of acetylene hydration catalyzed by a biomimetic tungsten complex. Liu YF, Liao RZ, Ding WJ, Yu JG, Liu RZ. J Biol Inorg Chem; 2011 Jun 01; 16(5):745-52. PubMed ID: 21476050 [Abstract] [Full Text] [Related]
10. Isolation and characterization of a bis(dithiolene)-supported tungsten-acetylenic complex as a model for acetylene hydratase. Cranswick MA, Sperber EC, Houser RP, Farquhar ER. J Inorg Biochem; 2024 Jun 01; 255():112543. PubMed ID: 38554579 [Abstract] [Full Text] [Related]
11. Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein. Rosner BM, Schink B. J Bacteriol; 1995 Oct 01; 177(20):5767-72. PubMed ID: 7592321 [Abstract] [Full Text] [Related]
12. Towards Structural-Functional Mimics of Acetylene Hydratase: Reversible Activation of Acetylene using a Biomimetic Tungsten Complex. Peschel LM, Belaj F, Mösch-Zanetti NC. Angew Chem Int Ed Engl; 2015 Oct 26; 54(44):13018-21. PubMed ID: 26480335 [Abstract] [Full Text] [Related]
13. Structural Mimics of Acetylene Hydratase: Tungsten Complexes Capable of Intramolecular Nucleophilic Attack on Acetylene. Vidovič C, Peschel LM, Buchsteiner M, Belaj F, Mösch-Zanetti NC. Chemistry; 2019 Nov 13; 25(63):14267-14272. PubMed ID: 31603595 [Abstract] [Full Text] [Related]
15. Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism. Boll M, Schink B, Messerschmidt A, Kroneck PM. Biol Chem; 2005 Oct 25; 386(10):999-1006. PubMed ID: 16218872 [Abstract] [Full Text] [Related]
16. Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme. Nakasako M, Odaka M, Yohda M, Dohmae N, Takio K, Kamiya N, Endo I. Biochemistry; 1999 Aug 03; 38(31):9887-98. PubMed ID: 10433695 [Abstract] [Full Text] [Related]
17. Crystal structure of 4-hydroxybutyryl-CoA dehydratase: radical catalysis involving a [4Fe-4S] cluster and flavin. Martins BM, Dobbek H, Cinkaya I, Buckel W, Messerschmidt A. Proc Natl Acad Sci U S A; 2004 Nov 02; 101(44):15645-9. PubMed ID: 15496473 [Abstract] [Full Text] [Related]
18. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides. Ryle MJ, Seefeldt LC. Biochemistry; 1996 Dec 10; 35(49):15654-62. PubMed ID: 8961928 [Abstract] [Full Text] [Related]
19. Unraveling the Way Acetaldehyde is Formed from Acetylene: A Study Based on DFT. Habib U, Riaz M, Hofmann M. ACS Omega; 2021 Mar 16; 6(10):6924-6933. PubMed ID: 33748606 [Abstract] [Full Text] [Related]
20. Tungsten-containing formate dehydrogenase from Desulfovibrio gigas: metal identification and preliminary structural data by multi-wavelength crystallography. Raaijmakers H, Teixeira S, Dias JM, Almendra MJ, Brondino CD, Moura I, Moura JJ, Romão MJ. J Biol Inorg Chem; 2001 Apr 16; 6(4):398-404. PubMed ID: 11372198 [Abstract] [Full Text] [Related] Page: [Next] [New Search]