These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


301 related items for PubMed ID: 17361056

  • 21. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J.
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [Abstract] [Full Text] [Related]

  • 22. Potential applications of microsystems engineering in minimal invasive surgery.
    Menz W, Buess G.
    Endosc Surg Allied Technol; 1993 Jun; 1(3):171-80. PubMed ID: 8055319
    [No Abstract] [Full Text] [Related]

  • 23. Preoperative planning system for surgical robotics setup with kinematics and haptics.
    Hayashibe M, Suzuki N, Hashizume M, Kakeji Y, Konishi K, Suzuki S, Hattori A.
    Int J Med Robot; 2005 Jan; 1(2):76-85. PubMed ID: 17518381
    [Abstract] [Full Text] [Related]

  • 24. Robotic assisted rehabilitation in Virtual Reality with the L-EXOS.
    Frisoli A, Bergamasco M, Carboncini MC, Rossi B.
    Stud Health Technol Inform; 2009 Jan; 145():40-54. PubMed ID: 19592785
    [Abstract] [Full Text] [Related]

  • 25. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O, Marinelli M, Citi L, Rossini PM, Rossini L, Megali G, Dario P.
    J Neurosci Methods; 2008 Jan 15; 167(1):91-104. PubMed ID: 17499364
    [Abstract] [Full Text] [Related]

  • 26. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery.
    Abeykoon AM, Ohnishi K.
    Int J Med Robot; 2007 Sep 15; 3(3):271-80. PubMed ID: 17729375
    [Abstract] [Full Text] [Related]

  • 27. Multihierarchical interactive task planning: application to mobile robotics.
    Galindo C, Fernández-Madrigal JA, González J.
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun 15; 38(3):785-98. PubMed ID: 18558542
    [Abstract] [Full Text] [Related]

  • 28. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE.
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep 15; 15(3):387-400. PubMed ID: 17894271
    [Abstract] [Full Text] [Related]

  • 29. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A, Moughamir S, Afilal L, Zaytoon J.
    Comput Methods Programs Biomed; 2008 Feb 15; 89(2):202-14. PubMed ID: 17881080
    [Abstract] [Full Text] [Related]

  • 30. [Applications of micromechatronics in minimally invasive surgery].
    Chen Y, Lin LM, Gao LM, Yan GZ.
    Zhongguo Yi Liao Qi Xie Za Zhi; 2000 Sep 15; 24(5):283-6. PubMed ID: 12583025
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Parsimonious evaluation of concentric-tube continuum robot equilibrium conformation.
    Rucker DC, Webster Iii RJ.
    IEEE Trans Biomed Eng; 2009 Sep 15; 56(9):2308-11. PubMed ID: 19535313
    [Abstract] [Full Text] [Related]

  • 34. [Development of real-world haptic technology].
    Ohnishi K, Shimono T, Natori K.
    Gan To Kagaku Ryoho; 2012 Jul 15; 39(7):1035-8. PubMed ID: 22790037
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Real-time generation of representations for cognitive models.
    Brou RJ, Doane SM, Bradshaw GL.
    Behav Res Methods; 2009 Aug 15; 41(3):633-8. PubMed ID: 19587172
    [Abstract] [Full Text] [Related]

  • 37. [Biomedical engineering supports surgical planning and interventions].
    Dickhaus H, Metzner R.
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2010 Aug 15; 53(8):791-800. PubMed ID: 20700778
    [Abstract] [Full Text] [Related]

  • 38. Review of robotic fixtures for minimally invasive surgery.
    Cepolina F, Michelini RC.
    Int J Med Robot; 2004 Jun 15; 1(1):43-63. PubMed ID: 17520596
    [Abstract] [Full Text] [Related]

  • 39. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.
    Lee DH, Choi J, Park JW, Bach DJ, Song SJ, Kim YH, Jo Y, Sun K.
    ASAIO J; 2009 Jun 15; 55(1):83-5. PubMed ID: 19092664
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.