These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


220 related items for PubMed ID: 17362027

  • 1. Sorption behavior of mixtures of glycerol and starch.
    Enrione JI, Hill SE, Mitchell JR.
    J Agric Food Chem; 2007 Apr 18; 55(8):2956-63. PubMed ID: 17362027
    [Abstract] [Full Text] [Related]

  • 2. Comparative study of the retrogradation of intermediate water content waxy maize, wheat, and potato starches.
    Ottenhof MA, Hill SE, Farhat IA.
    J Agric Food Chem; 2005 Feb 09; 53(3):631-8. PubMed ID: 15686412
    [Abstract] [Full Text] [Related]

  • 3. Determination of the maximum water solubility of eight native starches and the solubility of their acidic-methanol and -ethanol modified analogues.
    Mukerjea R, Slocum G, Robyt JF.
    Carbohydr Res; 2007 Jan 15; 342(1):103-10. PubMed ID: 17112491
    [Abstract] [Full Text] [Related]

  • 4. Effects of xanthan and galactomannan on the freeze/thaw properties of starch gels.
    Lo CT, Ramsden L.
    Nahrung; 2000 Jun 15; 44(3):211-4. PubMed ID: 10907245
    [Abstract] [Full Text] [Related]

  • 5. Comparison of pasting and gel stabilities of waxy and normal starches from potato, maize, and rice with those of a novel waxy cassava starch under thermal, chemical, and mechanical stress.
    Sánchez T, Dufour D, Moreno IX, Ceballos H.
    J Agric Food Chem; 2010 Apr 28; 58(8):5093-9. PubMed ID: 20356303
    [Abstract] [Full Text] [Related]

  • 6. Thermoplastic starch-waxy maize starch nanocrystals nanocomposites.
    Angellier H, Molina-Boisseau S, Dole P, Dufresne A.
    Biomacromolecules; 2006 Feb 28; 7(2):531-9. PubMed ID: 16471926
    [Abstract] [Full Text] [Related]

  • 7. Molecular degradation rate of rice and corn starches during acid-methanol treatment and its relation to the molecular structure of starch.
    Lin JH, Chang YH.
    J Agric Food Chem; 2006 Aug 09; 54(16):5880-6. PubMed ID: 16881690
    [Abstract] [Full Text] [Related]

  • 8. Starch biosynthesis: experiments on how starch granules grow in vivo.
    Mukerjea R, Mukerjea R, Robyt JF.
    Carbohydr Res; 2009 Jan 05; 344(1):67-73. PubMed ID: 18937936
    [Abstract] [Full Text] [Related]

  • 9. Determination of the bulk moisture diffusion coefficient for corn starch using an automated water sorption instrument.
    Yu X, Schmidt AR, Bello-Perez LA, Schmidt SJ.
    J Agric Food Chem; 2008 Jan 09; 56(1):50-8. PubMed ID: 18078318
    [Abstract] [Full Text] [Related]

  • 10. Porcine pancreatic alpha-amylase hydrolysis of native starch granules as a function of granule surface area.
    Kong BW, Kim JI, Kim MJ, Kim JC.
    Biotechnol Prog; 2003 Jan 09; 19(4):1162-6. PubMed ID: 12892477
    [Abstract] [Full Text] [Related]

  • 11. Studies of the retrogradation process for various starch gels using Raman spectroscopy.
    Fechner PM, Wartewig S, Kleinebudde P, Neubert RH.
    Carbohydr Res; 2005 Nov 21; 340(16):2563-8. PubMed ID: 16168973
    [Abstract] [Full Text] [Related]

  • 12. Sensory properties determined by starch type in white sauces: effects of freeze/thaw and hydrocolloid addition.
    Arocas A, Sanz T, Salvador A, Varela P, Fiszman SM.
    J Food Sci; 2010 Mar 21; 75(2):S132-40. PubMed ID: 20492259
    [Abstract] [Full Text] [Related]

  • 13. Assessment of the extent of starch dissolution in dimethyl sulfoxide by 1H NMR spectroscopy.
    Schmitz S, Dona AC, Castignolles P, Gilbert RG, Gaborieau M.
    Macromol Biosci; 2009 May 13; 9(5):506-14. PubMed ID: 19089874
    [Abstract] [Full Text] [Related]

  • 14. Influence of sucrose and water content on molecular mobility in starch-based glasses as assessed through structure and secondary relaxation.
    Poirier-Brulez F, Roudaut G, Champion D, Tanguy M, Simatos D.
    Biopolymers; 2006 Feb 05; 81(2):63-73. PubMed ID: 16127661
    [Abstract] [Full Text] [Related]

  • 15. Effect of granular characteristics on pasting properties of starch blends.
    Lin JH, Kao WT, Tsai YC, Chang YH.
    Carbohydr Polym; 2013 Nov 06; 98(2):1553-60. PubMed ID: 24053839
    [Abstract] [Full Text] [Related]

  • 16. Some rheological properties of sodium caseinate-starch gels.
    Bertolini AC, Creamer LK, Eppink M, Boland M.
    J Agric Food Chem; 2005 Mar 23; 53(6):2248-54. PubMed ID: 15769164
    [Abstract] [Full Text] [Related]

  • 17. Large scale structure of wheat, rice and potato starch revealed by ultra small angle X-ray diffraction.
    Dündar E, Turan Y, Blaurock AE.
    Int J Biol Macromol; 2009 Aug 01; 45(2):206-12. PubMed ID: 19463852
    [Abstract] [Full Text] [Related]

  • 18. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles.
    Rose DJ, Patterson JA, Hamaker BR.
    J Agric Food Chem; 2010 Jan 13; 58(1):493-9. PubMed ID: 20000566
    [Abstract] [Full Text] [Related]

  • 19. Starch biosynthesis: further evidence against the primer nonreducing-end mechanism and evidence for the reducing-end two-site insertion mechanism.
    Mukerjea R, Robyt JF.
    Carbohydr Res; 2005 Sep 26; 340(13):2206-11. PubMed ID: 16026770
    [Abstract] [Full Text] [Related]

  • 20. Starch biosynthesis: the primer nonreducing-end mechanism versus the nonprimer reducing-end two-site insertion mechanism.
    Mukerjea R, Robyt JF.
    Carbohydr Res; 2005 Feb 07; 340(2):245-55. PubMed ID: 15639244
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.