These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


258 related items for PubMed ID: 17368475

  • 1. Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis.
    Terblanche JS, Marais E, Chown SL.
    J Insect Physiol; 2007 May; 53(5):455-62. PubMed ID: 17368475
    [Abstract] [Full Text] [Related]

  • 2. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.
    Lee RE, Elnitsky MA, Rinehart JP, Hayward SA, Sandro LH, Denlinger DL.
    J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090
    [Abstract] [Full Text] [Related]

  • 3. Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae).
    Marais E, Terblanche JS, Chown SL.
    J Insect Physiol; 2009 Apr; 55(4):336-43. PubMed ID: 19171152
    [Abstract] [Full Text] [Related]

  • 4. Beneficial acclimation and the Bogert effect.
    Marais E, Chown SL.
    Ecol Lett; 2008 Oct; 11(10):1027-36. PubMed ID: 18616546
    [Abstract] [Full Text] [Related]

  • 5. Enhancement of supercooling capacity and survival by cold acclimation, rapid cold and heat hardening in Spodoptera exigua.
    Zheng X, Cheng W, Wang X, Lei C.
    Cryobiology; 2011 Dec; 63(3):164-9. PubMed ID: 21878325
    [Abstract] [Full Text] [Related]

  • 6. Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness.
    Powell SJ, Bale JS.
    J Exp Biol; 2005 Jul; 208(Pt 13):2615-20. PubMed ID: 15961747
    [Abstract] [Full Text] [Related]

  • 7. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica.
    Kawarasaki Y, Teets NM, Denlinger DL, Lee RE.
    J Exp Biol; 2013 Oct 15; 216(Pt 20):3937-45. PubMed ID: 23868837
    [Abstract] [Full Text] [Related]

  • 8. The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster.
    Jensen D, Overgaard J, Sørensen JG.
    J Insect Physiol; 2007 Feb 15; 53(2):179-86. PubMed ID: 17234205
    [Abstract] [Full Text] [Related]

  • 9. Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris.
    Shintani Y, Ishikawa Y.
    J Insect Physiol; 2007 Oct 15; 53(10):1055-62. PubMed ID: 17628587
    [Abstract] [Full Text] [Related]

  • 10. p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly Sarcophaga crassipalpis.
    Fujiwara Y, Denlinger DL.
    J Exp Biol; 2007 Sep 15; 210(Pt 18):3295-300. PubMed ID: 17766307
    [Abstract] [Full Text] [Related]

  • 11. Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island.
    Deere JA, Sinclair BJ, Marshall DJ, Chown SL.
    J Insect Physiol; 2006 Jul 15; 52(7):693-700. PubMed ID: 16750541
    [Abstract] [Full Text] [Related]

  • 12. Rapid cold hardening increases cold and chilling tolerances more than acclimation in the adults of the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae).
    Ju RT, Xiao YY, Li B.
    J Insect Physiol; 2011 Nov 15; 57(11):1577-82. PubMed ID: 21872604
    [Abstract] [Full Text] [Related]

  • 13. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS, Clusella-Trullas S, Deere JA, Chown SL.
    J Insect Physiol; 2008 Jan 15; 54(1):114-27. PubMed ID: 17889900
    [Abstract] [Full Text] [Related]

  • 14. Beneficial acclimation: sex specific thermal acclimation of metabolic capacity in the striped marsh frog (Limnodynastes peronii).
    Rogers KD, Thompson MB, Seebacher F.
    J Exp Biol; 2007 Aug 15; 210(Pt 16):2932-8. PubMed ID: 17690242
    [Abstract] [Full Text] [Related]

  • 15. Rapid cold-hardening in Zaprionus vittiger (Coquillett) (Diptera: Drosophilidae).
    Nyamukondiwa C, Terblanche JS.
    Cryo Letters; 2010 Aug 15; 31(6):504-12. PubMed ID: 21410019
    [Abstract] [Full Text] [Related]

  • 16. Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced rapid cold-hardening.
    Levis NA, Yi SX, Lee RE.
    J Exp Biol; 2012 Nov 01; 215(Pt 21):3768-73. PubMed ID: 22899523
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae).
    Terblanche JS, Sinclair BJ, Jaco Klok C, McFarlane ML, Chown SL.
    J Insect Physiol; 2005 Sep 01; 51(9):1013-23. PubMed ID: 15955537
    [Abstract] [Full Text] [Related]

  • 19. Insect overwintering in a changing climate.
    Bale JS, Hayward SA.
    J Exp Biol; 2010 Mar 15; 213(6):980-94. PubMed ID: 20190123
    [Abstract] [Full Text] [Related]

  • 20. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.
    Terblanche JS, Clusella-Trullas S, Chown SL.
    J Exp Biol; 2010 Sep 15; 213(Pt 17):2940-9. PubMed ID: 20709922
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.