These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 17369642
1. An improved Gibbs sampling method for motif discovery via sequence weighting. Chen X, Jiang T. Comput Syst Bioinformatics Conf; 2006; ():239-47. PubMed ID: 17369642 [Abstract] [Full Text] [Related]
2. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny. Siddharthan R, Siggia ED, van Nimwegen E. PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324 [Abstract] [Full Text] [Related]
4. info-gibbs: a motif discovery algorithm that directly optimizes information content during sampling. Defrance M, van Helden J. Bioinformatics; 2009 Oct 15; 25(20):2715-22. PubMed ID: 19689955 [Abstract] [Full Text] [Related]
7. Improved detection of DNA motifs using a self-organized clustering of familial binding profiles. Mahony S, Golden A, Smith TJ, Benos PV. Bioinformatics; 2005 Jun 15; 21 Suppl 1():i283-91. PubMed ID: 15961468 [Abstract] [Full Text] [Related]
8. W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChIP-chip data. Chen X, Guo L, Fan Z, Jiang T. Bioinformatics; 2008 May 01; 24(9):1121-8. PubMed ID: 18325926 [Abstract] [Full Text] [Related]
9. A comparative study on computational two-block motif detection: algorithms and applications. Bi C, Leeder JS, Vyhlidal CA. Mol Pharm; 2008 May 01; 5(1):3-16. PubMed ID: 18076137 [Abstract] [Full Text] [Related]
10. A Monte Carlo EM algorithm for de novo motif discovery in biomolecular sequences. Bi C. IEEE/ACM Trans Comput Biol Bioinform; 2009 May 01; 6(3):370-86. PubMed ID: 19644166 [Abstract] [Full Text] [Related]
11. Enhancing Gibbs sampling method for motif finding in DNA with initial graph representation of sequences. Stepančič Z. J Comput Biol; 2014 Oct 01; 21(10):741-52. PubMed ID: 25121709 [Abstract] [Full Text] [Related]
16. Genetic Interaction Motif Finding by expectation maximization--a novel statistical model for inferring gene modules from synthetic lethality. Qi Y, Ye P, Bader JS. BMC Bioinformatics; 2005 Dec 06; 6():288. PubMed ID: 16332255 [Abstract] [Full Text] [Related]
17. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. Hughes JD, Estep PW, Tavazoie S, Church GM. J Mol Biol; 2000 Mar 10; 296(5):1205-14. PubMed ID: 10698627 [Abstract] [Full Text] [Related]
18. An Algorithm for Motif Discovery with Iteration on Lengths of Motifs. Fan Y, Wu W, Yang J, Yang W, Liu R. IEEE/ACM Trans Comput Biol Bioinform; 2015 Mar 10; 12(1):136-41. PubMed ID: 26357084 [Abstract] [Full Text] [Related]
19. Some statistical properties of regulatory DNA sequences, and their use in predicting regulatory regions in the Drosophila genome: the fluffy-tail test. Abnizova I, te Boekhorst R, Walter K, Gilks WR. BMC Bioinformatics; 2005 Apr 27; 6():109. PubMed ID: 15857505 [Abstract] [Full Text] [Related]
20. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs. Seitzer P, Wilbanks EG, Larsen DJ, Facciotti MT. BMC Bioinformatics; 2012 Nov 27; 13():317. PubMed ID: 23181585 [Abstract] [Full Text] [Related] Page: [Next] [New Search]