These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


257 related items for PubMed ID: 17371498

  • 1. Neural mechanisms of detecting and orienting attention toward unattended threatening somatosensory targets. I. Intermodal effects.
    Dowman R.
    Psychophysiology; 2007 May; 44(3):407-19. PubMed ID: 17371498
    [Abstract] [Full Text] [Related]

  • 2. Neural mechanisms of detecting and orienting attention toward unattended threatening somatosensory target stimuli. II. Intensity effects.
    Dowman R.
    Psychophysiology; 2007 May; 44(3):420-30. PubMed ID: 17371499
    [Abstract] [Full Text] [Related]

  • 3. Human intracranially-recorded cortical responses evoked by painful electrical stimulation of the sural nerve.
    Dowman R, Darcey T, Barkan H, Thadani V, Roberts D.
    Neuroimage; 2007 Jan 15; 34(2):743-63. PubMed ID: 17097306
    [Abstract] [Full Text] [Related]

  • 4. Electrophysiological indices of orienting attention toward pain.
    Dowman R.
    Psychophysiology; 2004 Sep 15; 41(5):749-61. PubMed ID: 15318881
    [Abstract] [Full Text] [Related]

  • 5. The pain-related negative difference potential: a direct measure of central pain pathway activity or of interactions between the innocuous somatosensory and pain pathways?
    Dowman R, Schell S.
    Neurophysiol Clin; 1999 Oct 15; 29(5):423-42. PubMed ID: 10587952
    [Abstract] [Full Text] [Related]

  • 6. The role of somatic threat feature detectors in the attentional bias toward pain: effects of spatial attention.
    Dowman R.
    Psychophysiology; 2011 Mar 15; 48(3):397-409. PubMed ID: 20636292
    [Abstract] [Full Text] [Related]

  • 7. Effects of response conflict on pain-evoked medial prefrontal cortex activity.
    Dowman R, Glebus G, Shinners L.
    Psychophysiology; 2005 Sep 15; 42(5):555-8. PubMed ID: 16176377
    [Abstract] [Full Text] [Related]

  • 8. Intermodal spatial attention differs between vision and audition: an event-related potential analysis.
    Talsma D, Kok A.
    Psychophysiology; 2002 Nov 15; 39(6):689-706. PubMed ID: 12462498
    [Abstract] [Full Text] [Related]

  • 9. The role of the pain-evoked negative difference potential in dual-task response conflict.
    Dowman R.
    Eur J Pain; 2004 Dec 15; 8(6):567-78. PubMed ID: 15531225
    [Abstract] [Full Text] [Related]

  • 10. Orienting and maintenance of spatial attention in audition and vision: an event-related brain potential study.
    Salmi J, Rinne T, Degerman A, Alho K.
    Eur J Neurosci; 2007 Jun 15; 25(12):3725-33. PubMed ID: 17610592
    [Abstract] [Full Text] [Related]

  • 11. An artificial neural network model of orienting attention toward threatening somatosensory stimuli.
    Dowman R, Ben-Avraham D.
    Psychophysiology; 2008 Mar 15; 45(2):229-39. PubMed ID: 17971058
    [Abstract] [Full Text] [Related]

  • 12. Different modalities of painful somatosensory stimulations affect anticipatory cortical processes: a high-resolution EEG study.
    Babiloni C, Brancucci A, Capotosto P, Del Percio C, Romani GL, Arendt-Nielsen L, Rossini PM.
    Brain Res Bull; 2007 Mar 15; 71(5):475-84. PubMed ID: 17259016
    [Abstract] [Full Text] [Related]

  • 13. Cortical alpha rhythms are related to the anticipation of sensorimotor interaction between painful stimuli and movements: a high-resolution EEG study.
    Babiloni C, Capotosto P, Brancucci A, Del Percio C, Petrini L, Buttiglione M, Cibelli G, Romani GL, Rossini PM, Arendt-Nielsen L.
    J Pain; 2008 Oct 15; 9(10):902-11. PubMed ID: 18619907
    [Abstract] [Full Text] [Related]

  • 14. Slow cortical potential shifts preceding sensorimotor interactions.
    Babiloni C, Brancucci A, Capotosto P, Romani GL, Arendt-Nielsen L, Chen AC, Rossini PM.
    Brain Res Bull; 2005 Apr 30; 65(4):309-16. PubMed ID: 15811596
    [Abstract] [Full Text] [Related]

  • 15. The categorization of natural scenes: brain attention networks revealed by dense sensor ERPs.
    Codispoti M, Ferrari V, Junghöfer M, Schupp HT.
    Neuroimage; 2006 Aug 15; 32(2):583-91. PubMed ID: 16750397
    [Abstract] [Full Text] [Related]

  • 16. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study.
    Restuccia D, Della Marca G, Valeriani M, Leggio MG, Molinari M.
    Brain; 2007 Jan 15; 130(Pt 1):276-87. PubMed ID: 16982654
    [Abstract] [Full Text] [Related]

  • 17. Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method.
    Li L, Yao D, Yin G.
    Brain Res; 2009 Jul 28; 1282():84-94. PubMed ID: 19501069
    [Abstract] [Full Text] [Related]

  • 18. An ERP investigation on visuotactile interactions in peripersonal and extrapersonal space: evidence for the spatial rule.
    Sambo CF, Forster B.
    J Cogn Neurosci; 2009 Aug 28; 21(8):1550-9. PubMed ID: 18767919
    [Abstract] [Full Text] [Related]

  • 19. On the relation of movement-related potentials to the go/no-go effect on P3.
    Verleger R, Paehge T, Kolev V, Yordanova J, Jaśkowski P.
    Biol Psychol; 2006 Oct 28; 73(3):298-313. PubMed ID: 16837117
    [Abstract] [Full Text] [Related]

  • 20. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ, Green JJ.
    Brain Res; 2008 Aug 28; 1227():96-109. PubMed ID: 18621037
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.