These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


623 related items for PubMed ID: 17376616

  • 21. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties.
    Hadzović E, Betz G, Hadzidedić S, El-Arini SK, Leuenberger H.
    Int J Pharm; 2010 Aug 30; 396(1-2):53-62. PubMed ID: 20600735
    [Abstract] [Full Text] [Related]

  • 22. An experimental investigation of temperature rise during compaction of pharmaceutical powders.
    Krok A, Mirtic A, Reynolds GK, Schiano S, Roberts R, Wu CY.
    Int J Pharm; 2016 Nov 20; 513(1-2):97-108. PubMed ID: 27601333
    [Abstract] [Full Text] [Related]

  • 23. Radial die-wall pressure as a reliable tool for studying the effect of powder water activity on high speed tableting.
    Abdel-Hamid S, Betz G.
    Int J Pharm; 2011 Jun 15; 411(1-2):152-61. PubMed ID: 21497644
    [Abstract] [Full Text] [Related]

  • 24. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration.
    Yang B, Wei C, Yang Y, Wang Q, Li S.
    Drug Dev Ind Pharm; 2018 Sep 15; 44(9):1417-1425. PubMed ID: 29557692
    [Abstract] [Full Text] [Related]

  • 25. The surface layer of pharmaceutical compacts: the role of the punch surface and its impact on the mechanical properties of the compacts.
    Mazel V, Busignies V, Diarra H, Reiche I, Tchoreloff P.
    Int J Pharm; 2013 Feb 14; 442(1-2):42-8. PubMed ID: 22902389
    [Abstract] [Full Text] [Related]

  • 26. Microcrystalline cellulose from soybean hull as an excipient in solid dosage forms: Preparation, powder characterization, and tableting properties.
    Alamdari NE, Aksoy B, Babu RJ, Jiang Z.
    Int J Biol Macromol; 2024 Jun 14; 270(Pt 1):132298. PubMed ID: 38750863
    [Abstract] [Full Text] [Related]

  • 27. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.
    Mosig J, Kleinebudde P.
    J Pharm Sci; 2015 Mar 14; 104(3):1108-18. PubMed ID: 25558976
    [Abstract] [Full Text] [Related]

  • 28. Evaluation of tableting and tablet properties of Kollidon SR: the influence of moisture and mixtures with theophylline monohydrate.
    Hauschild K, Picker-Freyer KM.
    Pharm Dev Technol; 2006 Feb 14; 11(1):125-40. PubMed ID: 16544916
    [Abstract] [Full Text] [Related]

  • 29. Real-time monitoring of pharmaceutical properties of medical tablets during direct tableting process by hybrid tableting process parameter-time profiles.
    Saito S, Hattori Y, Sakamoto T, Otsuka M.
    Biomed Mater Eng; 2020 Feb 14; 30(5-6):509-524. PubMed ID: 31771033
    [Abstract] [Full Text] [Related]

  • 30. True density of microcrystalline cellulose.
    Sun CC.
    J Pharm Sci; 2005 Oct 14; 94(10):2132-4. PubMed ID: 16136576
    [Abstract] [Full Text] [Related]

  • 31. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy.
    Gupta A, Peck GE, Miller RW, Morris KR.
    J Pharm Sci; 2005 Oct 14; 94(10):2301-13. PubMed ID: 16136560
    [Abstract] [Full Text] [Related]

  • 32. An investigation into the impact of magnesium stearate on powder feeding during roller compaction.
    Dawes J, Gamble JF, Greenwood R, Robbins P, Tobyn M.
    Drug Dev Ind Pharm; 2012 Jan 14; 38(1):111-22. PubMed ID: 21810064
    [Abstract] [Full Text] [Related]

  • 33. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose.
    Sun CC.
    Int J Pharm; 2008 Jan 04; 346(1-2):93-101. PubMed ID: 17669609
    [Abstract] [Full Text] [Related]

  • 34. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate.
    Nordström J, Alderborn G.
    J Pharm Sci; 2015 Jun 04; 104(6):2029-2039. PubMed ID: 25872760
    [Abstract] [Full Text] [Related]

  • 35. Prediction of tablet properties based on near infrared spectra of raw mixed powders by chemometrics: Scale-up factor of blending and tableting processes.
    Otsuka M, Yamane I.
    J Pharm Sci; 2009 Nov 04; 98(11):4296-305. PubMed ID: 19530073
    [Abstract] [Full Text] [Related]

  • 36. Physical mechanical and tablet formation properties of hydroxypropylcellulose: in pure form and in mixtures.
    Picker-Freyer KM, Dürig T.
    AAPS PharmSciTech; 2007 Nov 09; 8(4):E92. PubMed ID: 18181552
    [Abstract] [Full Text] [Related]

  • 37. Predictions of tensile strength of binary tablets using linear and power law mixing rules.
    Michrafy A, Michrafy M, Kadiri MS, Dodds JA.
    Int J Pharm; 2007 Mar 21; 333(1-2):118-26. PubMed ID: 17097245
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Effects of drying methods on the physicochemical and compressional characteristics of Okra powder and the release properties of its metronidazole tablet formulation.
    Bakre LG, Jaiyeoba KT.
    Arch Pharm Res; 2009 Feb 21; 32(2):259-67. PubMed ID: 19280157
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 32.