These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 17377273
1. Real-time Marker-based Tracking of a Non-rigid Object. Köpfle A, Beier F, Wagner C, Männer R. Stud Health Technol Inform; 2007; 125():232-4. PubMed ID: 17377273 [Abstract] [Full Text] [Related]
2. Interaction model between elastic objects for haptic feedback considering collisions of soft tissue. Kuroda Y, Nakao M, Kuroda T, Oyama H, Komori M. Comput Methods Programs Biomed; 2005 Dec; 80(3):216-24. PubMed ID: 16226827 [Abstract] [Full Text] [Related]
3. Real-time soft tissue modelling for web-based surgical simulation: SurfaceChainMail. Li Y, Brodlie K, Phillips N. Stud Health Technol Inform; 2002 Dec; 85():261-7. PubMed ID: 15458099 [Abstract] [Full Text] [Related]
4. The visible ear simulator: a public PC application for GPU-accelerated haptic 3D simulation of ear surgery based on the visible ear data. Sorensen MS, Mosegaard J, Trier P. Otol Neurotol; 2009 Jun; 30(4):484-7. PubMed ID: 19546800 [Abstract] [Full Text] [Related]
5. BrainTrain: brain simulator for medical VR application. Panchaphongsaphak B, Burgkart R, Riener R. Stud Health Technol Inform; 2005 Jun; 111():378-84. PubMed ID: 15718764 [Abstract] [Full Text] [Related]
6. A vision-based surgical tool tracking approach for untethered surgery simulation and training. English J, Chang CY, Tardella N, Hu J. Stud Health Technol Inform; 2005 Jun; 111():126-32. PubMed ID: 15718713 [Abstract] [Full Text] [Related]
7. Boundary element method-based regularization for recovering of LV deformation. Yan P, Sinusas A, Duncan JS. Med Image Anal; 2007 Dec; 11(6):540-54. PubMed ID: 17584521 [Abstract] [Full Text] [Related]
9. New graphics models for PC based ocular surgery simulator. Mukai N, Harada M, Muroi K, Hikichi T, Yoshida A. Stud Health Technol Inform; 2001 Dec; 81():329-35. PubMed ID: 11317764 [Abstract] [Full Text] [Related]
12. Nearly automatic motion capture system for tracking octopus arm movements in 3D space. Zelman I, Galun M, Akselrod-Ballin A, Yekutieli Y, Hochner B, Flash T. J Neurosci Methods; 2009 Aug 30; 182(1):97-109. PubMed ID: 19505502 [Abstract] [Full Text] [Related]
13. An efficient and scalable deformable model for virtual reality-based medical applications. Choi KS, Sun H, Heng PA. Artif Intell Med; 2004 Sep 30; 32(1):51-69. PubMed ID: 15350624 [Abstract] [Full Text] [Related]
14. Elastically deformable 3D organs for haptic surgical simulation. Webster R, Haluck R, Ravenscroft R, Mohler B, Crouthamel E, Frack T, Terlecki S, Sheaffer J. Stud Health Technol Inform; 2002 Sep 30; 85():570-2. PubMed ID: 15458154 [Abstract] [Full Text] [Related]
16. Interactive 3D region extraction of volume data using deformable boundary object. Nakao M, Watanabe T, Kuroda T, Yoshihara H. Stud Health Technol Inform; 2005 Sep 30; 111():349-52. PubMed ID: 15718757 [Abstract] [Full Text] [Related]
17. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies. Peikon ID, Fitzsimmons NA, Lebedev MA, Nicolelis MA. J Neurosci Methods; 2009 Jun 15; 180(2):224-33. PubMed ID: 19464514 [Abstract] [Full Text] [Related]
20. A new approach for the synthesis of glistening effect in deformable anatomical objects displayed with haptic feedback. Prakash CE, Kim J, Manivannan M, Srinivasan MA. Stud Health Technol Inform; 2002 Jun 15; 85():369-75. PubMed ID: 15458116 [Abstract] [Full Text] [Related] Page: [Next] [New Search]