These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A concise synthesis of tubuphenylalanine and epi-tubuphenylalanine via a diastereoselective Mukaiyama aldol reaction of silyl ketene acetal. Park Y, Sim M, Chang TS, Ryu JS. Org Biomol Chem; 2016 Jan 21; 14(3):913-9. PubMed ID: 26608925 [Abstract] [Full Text] [Related]
3. Mechanistic investigations of the ZnCl2-mediated tandem Mukaiyama aldol lactonization: evidence for asynchronous, concerted transition states and discovery of 2-oxopyridyl ketene acetal variants. Zhao C, Mitchell TA, Vallakati R, Pérez LM, Romo D. J Am Chem Soc; 2012 Feb 15; 134(6):3084-94. PubMed ID: 22239064 [Abstract] [Full Text] [Related]
4. Catalytic enantioselective aldol reaction to ketones. Oisaki K, Zhao D, Kanai M, Shibasaki M. J Am Chem Soc; 2006 Jun 07; 128(22):7164-5. PubMed ID: 16734461 [Abstract] [Full Text] [Related]
5. Diastereoselective synthesis of tetrahydrofurans via mead reductive cyclization of keto-beta-lactones derived from the tandem Mukaiyama aldol lactonization (TMAL) process. Mitchell TA, Romo D. J Org Chem; 2007 Nov 23; 72(24):9053-9. PubMed ID: 17973527 [Abstract] [Full Text] [Related]
7. Enantioselective beta-lactone formation from ketene and aldehydes catalyzed by a chiral oxazaborolidine. Gnanadesikan V, Corey EJ. Org Lett; 2006 Oct 12; 8(21):4943-5. PubMed ID: 17020342 [Abstract] [Full Text] [Related]
8. Diastereoselective, three-component cascade synthesis of tetrahydrofurans and tetrahydropyrans employing the tandem Mukaiyama aldol-lactonization process. Mitchell TA, Zhao C, Romo D. J Org Chem; 2008 Dec 19; 73(24):9544-51. PubMed ID: 19053579 [Abstract] [Full Text] [Related]
12. A tandem non-aldol aldol Mukaiyama aldol reaction. Jung ME, van den Heuvel A. Org Lett; 2003 Nov 27; 5(24):4705-7. PubMed ID: 14627420 [Abstract] [Full Text] [Related]
14. Lewis base activation of Lewis acids. Vinylogous aldol addition reactions of conjugated N,O-silyl ketene acetals to aldehydes. Denmark SE, Heemstra JR. J Am Chem Soc; 2006 Feb 01; 128(4):1038-9. PubMed ID: 16433495 [Abstract] [Full Text] [Related]
16. A concise and unified strategy for synthesis of the C1-C18 macrolactone fragments of FD-891, FD-892 and their analogues: formal total synthesis of FD-891. Kanoh N, Kawamata A, Itagaki T, Miyazaki Y, Yahata K, Kwon E, Iwabuchi Y. Org Lett; 2014 Oct 03; 16(19):5216-9. PubMed ID: 25247478 [Abstract] [Full Text] [Related]
17. Alpha-alkenoyl ketene S,S-acetal-based multicomponent reaction: an efficient approach for the selective construction of polyfunctionalized cyclohexanones. Ma Y, Wang M, Li D, Bekturhun B, Liu J, Liu Q. J Org Chem; 2009 Apr 17; 74(8):3116-21. PubMed ID: 19296593 [Abstract] [Full Text] [Related]
18. Carbon acid induced Mukaiyama aldol type reaction of sterically hindered ketones. Yanai H, Yoshino Y, Takahashi A, Taguchi T. J Org Chem; 2010 Aug 06; 75(15):5375-8. PubMed ID: 20578756 [Abstract] [Full Text] [Related]
19. Diastereoselective reaction of sulfoxonium ylides, aldehydes and ketenes: an approach to trans-γ-lactones. Mondal M, Ho HJ, Peraino NJ, Gary MA, Wheeler KA, Kerrigan NJ. J Org Chem; 2013 May 03; 78(9):4587-93. PubMed ID: 23548074 [Abstract] [Full Text] [Related]
20. Catalytic enantioselective alkylative aldol reaction: efficient multicomponent assembly of dialkylzincs, allenic esters, and ketones toward highly functionalized delta-lactones with tetrasubstituted chiral centers. Oisaki K, Zhao D, Kanai M, Shibasaki M. J Am Chem Soc; 2007 Jun 13; 129(23):7439-43. PubMed ID: 17503823 [Abstract] [Full Text] [Related] Page: [Next] [New Search]