These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


264 related items for PubMed ID: 17380390

  • 21. Computer simulation of neutrophil transit through the pulmonary capillary bed.
    Hanger CC, Wagner WW, Janke SJ, Lloyd TC, Capen RL.
    J Appl Physiol (1985); 1993 Apr; 74(4):1647-52. PubMed ID: 8514678
    [Abstract] [Full Text] [Related]

  • 22. Computer simulation of non-newtonian effects on blood flow in large arteries.
    Leuprecht A, Perktold K.
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):149-63. PubMed ID: 11264865
    [Abstract] [Full Text] [Related]

  • 23. Three-phase CFD analytical modeling of blood flow.
    Jung J, Hassanein A.
    Med Eng Phys; 2008 Jan; 30(1):91-103. PubMed ID: 17244522
    [Abstract] [Full Text] [Related]

  • 24. Movement of a spherical cell in capillaries using a boundary element method.
    Wen PH, Aliabadi MH, Wang W.
    J Biomech; 2007 Jan; 40(8):1786-93. PubMed ID: 17027993
    [Abstract] [Full Text] [Related]

  • 25. A planar model for mucociliary transport: effect of mucus viscoelasticity.
    King M, Agarwal M, Shukla JB.
    Biorheology; 1993 Jan; 30(1):49-61. PubMed ID: 8374102
    [Abstract] [Full Text] [Related]

  • 26. Rheological analysis and measurement of neutrophil indentation.
    Lomakina EB, Spillmann CM, King MR, Waugh RE.
    Biophys J; 2004 Dec; 87(6):4246-58. PubMed ID: 15361412
    [Abstract] [Full Text] [Related]

  • 27. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation.
    Ning X, Zhu Q, Lanir Y, Margulies SS.
    J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695
    [Abstract] [Full Text] [Related]

  • 28. A model for shear stress sensing and transmission in vascular endothelial cells.
    Mazzag BM, Tamaresis JS, Barakat AI.
    Biophys J; 2003 Jun; 84(6):4087-101. PubMed ID: 12770912
    [Abstract] [Full Text] [Related]

  • 29. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.
    Sarifuddin, Chakravarty S, Mandal PK, Layek GC.
    J Med Eng Technol; 2008 Jun; 32(5):385-99. PubMed ID: 18821416
    [Abstract] [Full Text] [Related]

  • 30. De-activation of neutrophils in suspension by fluid shear stress: a requirement for erythrocytes.
    Komai Y, Schmid-Schönbein GW.
    Ann Biomed Eng; 2005 Oct; 33(10):1375-86. PubMed ID: 16240086
    [Abstract] [Full Text] [Related]

  • 31. The influence of suspending phase viscosity on the passage of red blood cells through capillary-size micropores.
    Fisher TC, Van Der Waart FJ, Meiselman HJ.
    Biorheology; 1996 Oct; 33(2):153-68. PubMed ID: 8679962
    [Abstract] [Full Text] [Related]

  • 32. Viscoelastic properties of leukocytes.
    Chien S, Schmid-Schönbein GW, Sung KL, Schmalzer EA, Skalak R.
    Kroc Found Ser; 1984 Oct; 16():19-51. PubMed ID: 6371192
    [Abstract] [Full Text] [Related]

  • 33. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.
    Drury JL, Dembo M.
    Biophys J; 2001 Dec; 81(6):3166-77. PubMed ID: 11720983
    [Abstract] [Full Text] [Related]

  • 34. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N, Bransky A, Dinnar U.
    J Biomech; 2007 Dec; 40(9):2088-95. PubMed ID: 17188279
    [Abstract] [Full Text] [Related]

  • 35. Mechanical behavior of the erythrocyte in microvessel stenosis.
    Zhang Z, Zhang X.
    Sci China Life Sci; 2011 May; 54(5):450-8. PubMed ID: 21416230
    [Abstract] [Full Text] [Related]

  • 36. The nonlinear mechanical response of the red blood cell.
    Yoon YZ, Kotar J, Yoon G, Cicuta P.
    Phys Biol; 2008 Aug 13; 5(3):036007. PubMed ID: 18698116
    [Abstract] [Full Text] [Related]

  • 37. Simulation model for flow of neutrophils in pulmonary capillary network.
    Shirai A, Fujita R, Hayase T.
    Technol Health Care; 2005 Aug 13; 13(4):301-11. PubMed ID: 16055978
    [Abstract] [Full Text] [Related]

  • 38. Cytoskeletal remodeling and cellular activation during deformation of neutrophils into narrow channels.
    Yap B, Kamm RD.
    J Appl Physiol (1985); 2005 Dec 13; 99(6):2323-30. PubMed ID: 16123209
    [Abstract] [Full Text] [Related]

  • 39. Shock formation and non-linear dispersion in a microvascular capillary network.
    Pop SR, Richardson G, Waters SL, Jensen OE.
    Math Med Biol; 2007 Dec 13; 24(4):379-400. PubMed ID: 17947254
    [Abstract] [Full Text] [Related]

  • 40. Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties.
    Yap B, Kamm RD.
    J Appl Physiol (1985); 2005 May 13; 98(5):1930-9. PubMed ID: 15640383
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.