These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


463 related items for PubMed ID: 17380508

  • 21. Metal-ligand interactions: an analysis of zinc binding groups using the Protein Data Bank.
    Kawai K, Nagata N.
    Eur J Med Chem; 2012 May; 51():271-6. PubMed ID: 22405284
    [Abstract] [Full Text] [Related]

  • 22. Information theory-based scoring function for the structure-based prediction of protein-ligand binding affinity.
    Kulharia M, Goody RS, Jackson RM.
    J Chem Inf Model; 2008 Oct; 48(10):1990-8. PubMed ID: 18767831
    [Abstract] [Full Text] [Related]

  • 23. An accurate metalloprotein-specific scoring function and molecular docking program devised by a dynamic sampling and iteration optimization strategy.
    Bai F, Liao S, Gu J, Jiang H, Wang X, Li H.
    J Chem Inf Model; 2015 Apr 27; 55(4):833-47. PubMed ID: 25746437
    [Abstract] [Full Text] [Related]

  • 24. Predicting protein-ligand binding affinities: a low scoring game?
    Marsden PM, Puvanendrampillai D, Mitchell JB, Glen RC.
    Org Biomol Chem; 2004 Nov 21; 2(22):3267-73. PubMed ID: 15534704
    [Abstract] [Full Text] [Related]

  • 25. LigScore: a novel scoring function for predicting binding affinities.
    Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M.
    J Mol Graph Model; 2005 Apr 21; 23(5):395-407. PubMed ID: 15781182
    [Abstract] [Full Text] [Related]

  • 26. Distance dependent scoring function for describing protein-ligand intermolecular interactions.
    Artemenko N.
    J Chem Inf Model; 2008 Mar 21; 48(3):569-74. PubMed ID: 18290639
    [Abstract] [Full Text] [Related]

  • 27. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes.
    Wang R, Lu Y, Fang X, Wang S.
    J Chem Inf Comput Sci; 2004 Mar 21; 44(6):2114-25. PubMed ID: 15554682
    [Abstract] [Full Text] [Related]

  • 28. Novel, customizable scoring functions, parameterized using N-PLS, for structure-based drug discovery.
    Catana C, Stouten PF.
    J Chem Inf Model; 2007 Mar 21; 47(1):85-91. PubMed ID: 17238252
    [Abstract] [Full Text] [Related]

  • 29. Scoring binding affinity of multiple ligands using implicit solvent and a single molecular dynamics trajectory: application to influenza neuraminidase.
    Bonnet P, Bryce RA.
    J Mol Graph Model; 2005 Oct 21; 24(2):147-56. PubMed ID: 16098779
    [Abstract] [Full Text] [Related]

  • 30. Directed synthesis of a heterobimetallic complex based on a novel unsymmetric double-Schiff-base ligand: preparation, characterization, reactivity and structures of hetero- and homobimetallic nickel(II) and zinc(II) complexes.
    Roth A, Buchholz A, Rudolph M, Schütze E, Kothe E, Plass W.
    Chemistry; 2008 Oct 21; 14(5):1571-83. PubMed ID: 18058956
    [Abstract] [Full Text] [Related]

  • 31. Fluorescence of 5-arylvinyl-5'-methyl-2,2'-bipyridyl ligands and their zinc complexes.
    Younes AH, Zhang L, Clark RJ, Zhu L.
    J Org Chem; 2009 Nov 20; 74(22):8761-72. PubMed ID: 19852467
    [Abstract] [Full Text] [Related]

  • 32. Understanding the binding of inhibitors of matrix metalloproteinases by molecular docking, quantum mechanical calculations, molecular dynamics simulations, and a MMGBSA/MMBappl study.
    Singh T, Adekoya OA, Jayaram B.
    Mol Biosyst; 2015 Apr 20; 11(4):1041-51. PubMed ID: 25611160
    [Abstract] [Full Text] [Related]

  • 33. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations.
    Vasanthanathan P, Olsen L, Jørgensen FS, Vermeulen NP, Oostenbrink C.
    Drug Metab Dispos; 2010 Aug 20; 38(8):1347-54. PubMed ID: 20413725
    [Abstract] [Full Text] [Related]

  • 34. Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals.
    Maret W.
    Biometals; 2009 Feb 20; 22(1):149-57. PubMed ID: 19130267
    [Abstract] [Full Text] [Related]

  • 35. A multistep approach to structure-based drug design: studying ligand binding at the human neutrophil elastase.
    Steinbrecher T, Case DA, Labahn A.
    J Med Chem; 2006 Mar 23; 49(6):1837-44. PubMed ID: 16539369
    [Abstract] [Full Text] [Related]

  • 36. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R, Kurbatova N, Thornton J.
    Bioinformatics; 2008 Aug 15; 24(16):i105-11. PubMed ID: 18689810
    [Abstract] [Full Text] [Related]

  • 37. Analysis of zinc-ligand bond lengths in metalloproteins: trends and patterns.
    Tamames B, Sousa SF, Tamames J, Fernandes PA, Ramos MJ.
    Proteins; 2007 Nov 15; 69(3):466-75. PubMed ID: 17623850
    [Abstract] [Full Text] [Related]

  • 38. Extension of QM/MM docking and its applications to metalloproteins.
    Cho AE, Rinaldo D.
    J Comput Chem; 2009 Dec 15; 30(16):2609-16. PubMed ID: 19373896
    [Abstract] [Full Text] [Related]

  • 39. Molecular mechanics methods for predicting protein-ligand binding.
    Huang N, Kalyanaraman C, Bernacki K, Jacobson MP.
    Phys Chem Chem Phys; 2006 Nov 28; 8(44):5166-77. PubMed ID: 17203140
    [Abstract] [Full Text] [Related]

  • 40. Binding of antifusion peptides with HIVgp41 from molecular dynamics simulations: quantitative correlation with experiment.
    Strockbine B, Rizzo RC.
    Proteins; 2007 May 15; 67(3):630-42. PubMed ID: 17335007
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.