These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
223 related items for PubMed ID: 17384981
21. Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: effect of different inhibitors. Correia RR, Miranda MR, Guimarães JR. Environ Res; 2012 Jan; 112():86-91. PubMed ID: 22115392 [Abstract] [Full Text] [Related]
22. Methylmercury formation in a wetland mesocosm amended with sulfate. Harmon SM, King JK, Gladden JB, Chandler GT, Newman LA. Environ Sci Technol; 2004 Jan 15; 38(2):650-6. PubMed ID: 14750744 [Abstract] [Full Text] [Related]
23. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia. Correia RRS, Guimarães JRD. Chemosphere; 2017 Jan 15; 167():438-443. PubMed ID: 27750167 [Abstract] [Full Text] [Related]
24. Mercury (micro)biogeochemistry in polar environments. Barkay T, Poulain AJ. FEMS Microbiol Ecol; 2007 Feb 15; 59(2):232-41. PubMed ID: 17199802 [Abstract] [Full Text] [Related]
25. Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries. Mehrotra AS, Sedlak DL. Environ Sci Technol; 2005 Apr 15; 39(8):2564-70. PubMed ID: 15884350 [Abstract] [Full Text] [Related]
26. Sediment microbial community structure and mercury methylation in mercury-polluted Clear Lake, California. Macalady JL, Mack EE, Nelson DC, Scow KM. Appl Environ Microbiol; 2000 Apr 15; 66(4):1479-88. PubMed ID: 10742230 [Abstract] [Full Text] [Related]
27. Identification of sulfate-reducing bacteria in methylmercury-contaminated mine tailings by analysis of SSU rRNA genes. Winch S, Mills HJ, Kostka JE, Fortin D, Lean DR. FEMS Microbiol Ecol; 2009 Apr 15; 68(1):94-107. PubMed ID: 19291023 [Abstract] [Full Text] [Related]
28. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Yu RQ, Flanders JR, Mack EE, Turner R, Mirza MB, Barkay T. Environ Sci Technol; 2012 Mar 06; 46(5):2684-91. PubMed ID: 22148328 [Abstract] [Full Text] [Related]
29. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures. Kucharzyk KH, Deshusses MA, Porter KA, Hsu-Kim H. Environ Sci Process Impacts; 2015 Sep 06; 17(9):1568-77. PubMed ID: 26211614 [Abstract] [Full Text] [Related]
30. Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions. Wang Y, Dang F, Zhong H, Wei Z, Li P. Environ Sci Pollut Res Int; 2016 Mar 06; 23(5):4602-8. PubMed ID: 26520099 [Abstract] [Full Text] [Related]
31. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Drott A, Lambertsson L, Björn E, Skyllberg U. Environ Sci Technol; 2007 Apr 01; 41(7):2270-6. PubMed ID: 17438774 [Abstract] [Full Text] [Related]
32. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria. Ekstrom EB, Morel FM. Environ Sci Technol; 2008 Jan 01; 42(1):93-9. PubMed ID: 18350881 [Abstract] [Full Text] [Related]
33. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Environ Sci Technol; 2013 Mar 19; 47(6):2441-56. PubMed ID: 23384298 [Abstract] [Full Text] [Related]
34. Evidence of Mercury Methylation and Demethylation by the Estuarine Microbial Communities Obtained in Stable Hg Isotope Studies. Figueiredo N, Serralheiro ML, Canário J, Duarte A, Hintelmann H, Carvalho C. Int J Environ Res Public Health; 2018 Sep 29; 15(10):. PubMed ID: 30274240 [Abstract] [Full Text] [Related]
35. Evaluation of wetland methyl mercury export as a function of experimental manipulations. Gustin MS, Chavan PV, Dennett KE, Marchand EA, Donaldson S. J Environ Qual; 2006 Sep 29; 35(6):2352-9. PubMed ID: 17071906 [Abstract] [Full Text] [Related]
36. [Role of Sulfate-Reducing Bacteria in Mercury Methylation in Soil of the Water-Level-Fluctuating Zone of the Three Gorges Reservoir Area]. Chen R, Chen H, Wang DY, Xiang YP, Shen H. Huan Jing Ke Xue; 2016 Oct 08; 37(10):3774-3780. PubMed ID: 29964408 [Abstract] [Full Text] [Related]
37. Mercury speciation in marine sediments under sulfate-limited conditions. Han S, Narasingarao P, Obraztsova A, Gieskes J, Hartmann AC, Tebo BM, Allen EE, Deheyn DD. Environ Sci Technol; 2010 May 15; 44(10):3752-7. PubMed ID: 20429556 [Abstract] [Full Text] [Related]
38. Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Fleming EJ, Mack EE, Green PG, Nelson DC. Appl Environ Microbiol; 2006 Jan 15; 72(1):457-64. PubMed ID: 16391078 [Abstract] [Full Text] [Related]
39. Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Warner KA, Roden EE, Bonzongo JC. Environ Sci Technol; 2003 May 15; 37(10):2159-65. PubMed ID: 12785521 [Abstract] [Full Text] [Related]
40. Sulfate addition increases methylmercury production in an experimental wetland. Jeremiason JD, Engstrom DR, Swain EB, Nater EA, Johnson BM, Almendinger JE, Monson BA, Kolka RK. Environ Sci Technol; 2006 Jun 15; 40(12):3800-6. PubMed ID: 16830545 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]