These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 17387547

  • 21. Consideration of species-specific diatom indicators of anthropogenic stress in the Great Lakes.
    Reavie ED, Cai M.
    PLoS One; 2019; 14(5):e0210927. PubMed ID: 31048847
    [Abstract] [Full Text] [Related]

  • 22. Changes in mercury levels in Great Lakes fish between 1970s and 2007.
    Bhavsar SP, Gewurtz SB, McGoldrick DJ, Keir MJ, Backus SM.
    Environ Sci Technol; 2010 May 01; 44(9):3273-9. PubMed ID: 20350001
    [Abstract] [Full Text] [Related]

  • 23. Ecosystem regime change inferred from the distribution of trace metals in Lake Erie sediments.
    Yuan F, Depew R, Soltis-Muth C.
    Sci Rep; 2014 Dec 01; 4():7265. PubMed ID: 25434300
    [Abstract] [Full Text] [Related]

  • 24. Application of ecosystem-scale fate and bioaccumulation models to predict fish mercury response times to changes in atmospheric deposition.
    Knightes CD, Sunderland EM, Craig Barber M, Johnston JM, Ambrose RB.
    Environ Toxicol Chem; 2009 Apr 01; 28(4):881-93. PubMed ID: 19391686
    [Abstract] [Full Text] [Related]

  • 25. Flame retardants in eggs of American kestrels and European starlings from southern Lake Ontario region (North America).
    Chen D, Letcher RJ, Martin P.
    J Environ Monit; 2012 Nov 01; 14(11):2870-6. PubMed ID: 22930373
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Within-lake distribution patterns of fish assemblages: the relative roles of spatial, temporal and random environmental factors in assessing fish assemblages using gillnets in a large and shallow temperate lake.
    Specziár A, György AI, Erős T.
    J Fish Biol; 2013 Mar 01; 82(3):840-55. PubMed ID: 23464547
    [Abstract] [Full Text] [Related]

  • 28. Assessing relationships between human land uses and the decline of native mussels, fish, and macroinvertebrates in the Clinch and Powell River watershed, USA.
    Diamond JM, Bressler DW, Serveiss VB.
    Environ Toxicol Chem; 2002 Jun 01; 21(6):1147-55. PubMed ID: 12069297
    [Abstract] [Full Text] [Related]

  • 29. Landscape character and fish assemblage structure and function in western Lake Superior streams: general relationships and identification of thresholds.
    Brazner JC, Tanner DK, Detenbeck NE, Batterman SL, Stark SL, Jagger LA, Snarski VM.
    Environ Manage; 2004 Jun 01; 33(6):855-75. PubMed ID: 15517683
    [Abstract] [Full Text] [Related]

  • 30. PCB levels and trends within the Detroit River-Western Lake Erie basin: a historical perspective of ecosystem monitoring.
    Heidtke T, Hartig JH, Zarull MA, Yu B.
    Environ Monit Assess; 2006 Jan 01; 112(1-3):23-33. PubMed ID: 16404532
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. A synthesis of rates and controls on elemental mercury evasion in the Great Lakes Basin.
    Denkenberger JS, Driscoll CT, Branfireun BA, Eckley CS, Cohen M, Selvendiran P.
    Environ Pollut; 2012 Feb 01; 161():291-8. PubMed ID: 21719170
    [Abstract] [Full Text] [Related]

  • 33. Genetic analysis across different spatial scales reveals multiple dispersal mechanisms for the invasive hydrozoan Cordylophora in the Great Lakes.
    Darling JA, Folino-Rorem NC.
    Mol Ecol; 2009 Dec 01; 18(23):4827-40. PubMed ID: 19889038
    [Abstract] [Full Text] [Related]

  • 34. Relative importance of phosphorus, fish biomass, and watershed land use as drivers of phytoplankton abundance in shallow lakes.
    Gorman MW, Zimmer KD, Herwig BR, Hanson MA, Wright RG, Vaughn SR, Younk JA.
    Sci Total Environ; 2014 Jan 01; 466-467():849-55. PubMed ID: 23978583
    [Abstract] [Full Text] [Related]

  • 35. Perfluorinated compounds in fish from U.S. urban rivers and the Great Lakes.
    Stahl LL, Snyder BD, Olsen AR, Kincaid TM, Wathen JB, McCarty HB.
    Sci Total Environ; 2014 Nov 15; 499():185-95. PubMed ID: 25190044
    [Abstract] [Full Text] [Related]

  • 36. Effects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region.
    Soranno PA, Cheruvelil KS, Wagner T, Webster KE, Bremigan MT.
    PLoS One; 2015 Nov 15; 10(8):e0135454. PubMed ID: 26267813
    [Abstract] [Full Text] [Related]

  • 37. [Land cover and landscape pattern changes in Poyang Lake region of China in 1980-2010].
    Wang JL, Ran YY, Zhang YJ, Cao XM, Yang F.
    Ying Yong Sheng Tai Xue Bao; 2013 Apr 15; 24(4):1085-93. PubMed ID: 23898669
    [Abstract] [Full Text] [Related]

  • 38. Historical changes in the ecosystem condition of a small mountain lake over the past 60 years as revealed by plankton remains and Daphnia ephippial carapaces stored in lake sediments.
    Ohtsuki H, Awano T, Tsugeki NK, Ishida S, Oda H, Makino W, Urabe J.
    PLoS One; 2015 Apr 15; 10(3):e0119767. PubMed ID: 25757090
    [Abstract] [Full Text] [Related]

  • 39. An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem.
    Gilbertson M, Carpenter DO.
    Environ Res; 2004 Jul 15; 95(3):240-6. PubMed ID: 15220059
    [Abstract] [Full Text] [Related]

  • 40. Understanding uncertainty in the effect of low-head dams on fishes of Great Lakes tributaries.
    Harford WJ, McLaughlin RL.
    Ecol Appl; 2007 Sep 15; 17(6):1783-96. PubMed ID: 17913140
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.