These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2. Márquez V, Wilson DN, Tate WP, Triana-Alonso F, Nierhaus KH. Cell; 2004 Jul 09; 118(1):45-55. PubMed ID: 15242643 [Abstract] [Full Text] [Related]
5. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site. Paul CP, Barry JK, Dinesh-Kumar SP, Brault V, Miller WA. J Mol Biol; 2001 Jul 27; 310(5):987-99. PubMed ID: 11502008 [Abstract] [Full Text] [Related]
7. Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency. Kontos H, Napthine S, Brierley I. Mol Cell Biol; 2001 Dec 27; 21(24):8657-70. PubMed ID: 11713298 [Abstract] [Full Text] [Related]
8. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses. Wang G, Yang Y, Huang X, Du Z. J Biomol Struct Dyn; 2015 Dec 27; 33(7):1547-57. PubMed ID: 25204560 [Abstract] [Full Text] [Related]
9. Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: a model for a possible family of structurally related RNA pseudoknots. Du Z, Giedroc DP, Hoffman DW. Biochemistry; 1996 Apr 02; 35(13):4187-98. PubMed ID: 8672455 [Abstract] [Full Text] [Related]
10. Characterization of the mechanical unfolding of RNA pseudoknots. Green L, Kim CH, Bustamante C, Tinoco I. J Mol Biol; 2008 Jan 11; 375(2):511-28. PubMed ID: 18021801 [Abstract] [Full Text] [Related]
11. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Ritchie DB, Foster DA, Woodside MT. Proc Natl Acad Sci U S A; 2012 Oct 02; 109(40):16167-72. PubMed ID: 22988073 [Abstract] [Full Text] [Related]
12. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting. Brierley I, Meredith MR, Bloys AJ, Hagervall TG. J Mol Biol; 1997 Jul 18; 270(3):360-73. PubMed ID: 9237903 [Abstract] [Full Text] [Related]
13. E. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. Weiss RB, Dunn DM, Shuh M, Atkins JF, Gesteland RF. New Biol; 1989 Nov 18; 1(2):159-69. PubMed ID: 2562219 [Abstract] [Full Text] [Related]
16. mRNA pseudoknot structures can act as ribosomal roadblocks. Tholstrup J, Oddershede LB, Sørensen MA. Nucleic Acids Res; 2012 Jan 18; 40(1):303-13. PubMed ID: 21908395 [Abstract] [Full Text] [Related]
17. Torsional restraint: a new twist on frameshifting pseudoknots. Plant EP, Dinman JD. Nucleic Acids Res; 2005 Jan 18; 33(6):1825-33. PubMed ID: 15800212 [Abstract] [Full Text] [Related]
18. In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal. Bidou L, Stahl G, Grima B, Liu H, Cassan M, Rousset JP. RNA; 1997 Oct 18; 3(10):1153-8. PubMed ID: 9326490 [Abstract] [Full Text] [Related]
19. A dynamical model of programmed -1 ribosomal frameshifting. Xie P. J Theor Biol; 2013 Nov 07; 336():119-31. PubMed ID: 23911574 [Abstract] [Full Text] [Related]
20. The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting. Plant EP, Jacobs KL, Harger JW, Meskauskas A, Jacobs JL, Baxter JL, Petrov AN, Dinman JD. RNA; 2003 Feb 07; 9(2):168-74. PubMed ID: 12554858 [Abstract] [Full Text] [Related] Page: [Next] [New Search]