These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
195 related items for PubMed ID: 17391735
21. Mapping ground water vulnerability to pesticide leaching with a process-based metamodel of EuroPEARL. Tiktak A, Boesten JJ, van der Linden AM, Vanclooster M. J Environ Qual; 2006; 35(4):1213-26. PubMed ID: 16825441 [Abstract] [Full Text] [Related]
22. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models. Karpouzas DG, Cervelli S, Watanabe H, Capri E, Ferrero A. Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738 [Abstract] [Full Text] [Related]
23. Integrated modeling environment for statewide assessment of groundwater vulnerability from pesticide use in agriculture. Eason A, Tim US, Wang X. Pest Manag Sci; 2004 Aug; 60(8):739-45. PubMed ID: 15307665 [Abstract] [Full Text] [Related]
24. Modeling pesticide losses from diffuse sources in Germany. Bach M, Huber A, Frede HG. Water Sci Technol; 2001 Aug; 44(7):189-96. PubMed ID: 11724487 [Abstract] [Full Text] [Related]
25. Comparison of pesticide root zone model 3.12: leaching predictions with field data. Russell MH, Jones RL. Environ Toxicol Chem; 2002 Aug; 21(8):1552-7. PubMed ID: 12152753 [Abstract] [Full Text] [Related]
26. Fate and transport of monoterpenes through soils. Part II: calculation of the effect of soil temperature, water saturation and organic carbon content. van Roon A, Parsons JR, Krap L, Govers HA. Chemosphere; 2005 Sep; 61(1):129-38. PubMed ID: 16157175 [Abstract] [Full Text] [Related]
27. Effects of soil variability and weather conditions on pesticide leaching--a farm-level evaluation. van Alphen BJ, Stoorvogel JJ. J Environ Qual; 2002 Sep; 31(3):797-805. PubMed ID: 12026082 [Abstract] [Full Text] [Related]
28. Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Cabidoche YM, Achard R, Cattan P, Clermont-Dauphin C, Massat F, Sansoulet J. Environ Pollut; 2009 May; 157(5):1697-705. PubMed ID: 19167793 [Abstract] [Full Text] [Related]
29. Lysimeter experiment to investigate the potential influence of diffusion-limited sorption on pesticide availability for leaching. van Beinum W, Beulke S, Fryer C, Brown C. J Agric Food Chem; 2006 Nov 29; 54(24):9152-9. PubMed ID: 17117804 [Abstract] [Full Text] [Related]
30. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California. Luo Y, Zhang X, Liu X, Ficklin D, Zhang M. Environ Pollut; 2008 Dec 29; 156(3):1171-81. PubMed ID: 18457909 [Abstract] [Full Text] [Related]
31. Leaching of atrazine, metolachlor and diuron in the field in relation to their injection depth into a silt loam soil. Delphin JE, Chapot JY. Chemosphere; 2006 Sep 29; 64(11):1862-9. PubMed ID: 16524619 [Abstract] [Full Text] [Related]
32. Prediction of pesticide volatilization with PELMO 3.31. Ferrari F, Klein M, Capri E, Trevisan M. Chemosphere; 2005 Jul 29; 60(5):705-13. PubMed ID: 15963809 [Abstract] [Full Text] [Related]
33. The pesticide module of the Root Zone Water Quality Model (RZWQM): testing and sensitivity analysis of selected algorithms for pesticide fate and surface runoff. Ma Q, Wauchope RD, Rojas KW, Ahuja LR, Ma L, Malone RW. Pest Manag Sci; 2004 Mar 29; 60(3):240-52. PubMed ID: 15025236 [Abstract] [Full Text] [Related]
34. Variations in pesticide leaching related to land use, pesticide properties, and unsaturated zone thickness. Webb RM, Wieczorek ME, Nolan BT, Hancock TC, Sandstrom MW, Barbash JE, Bayless ER, Healy RW, Linard J. J Environ Qual; 2008 Mar 29; 37(3):1145-57. PubMed ID: 18453434 [Abstract] [Full Text] [Related]
35. Application of a GIS-AF/RF model to assess the risk of herbicide leaching in a citrus-growing area of the Valencia Community, Spain. de Paz JM, Rubio JL. Sci Total Environ; 2006 Dec 01; 371(1-3):44-54. PubMed ID: 16930681 [Abstract] [Full Text] [Related]
36. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed. Luo Y, Zhang M. J Environ Qual; 2009 Dec 01; 38(2):664-74. PubMed ID: 19244487 [Abstract] [Full Text] [Related]
37. Risk of water contamination by nitrogen in Canada as estimated by the IROWC-N model. De Jong R, Drury CF, Yang JY, Campbell CA. J Environ Manage; 2009 Jul 01; 90(10):3169-81. PubMed ID: 19592153 [Abstract] [Full Text] [Related]
38. A review of model applications for structured soils: b) Pesticide transport. Köhne JM, Köhne S, Simůnek J. J Contam Hydrol; 2009 Feb 16; 104(1-4):36-60. PubMed ID: 19012993 [Abstract] [Full Text] [Related]
39. Leaching behaviour of pharmaceuticals in soil-testing-systems: a part of an environmental risk assessment for groundwater protection. Oppel J, Broll G, Löffler D, Meller M, Römbke J, Ternes T. Sci Total Environ; 2004 Jul 26; 328(1-3):265-73. PubMed ID: 15207589 [Abstract] [Full Text] [Related]
40. Impact of selected agricultural management options on the reduction of nitrogen loads in three representative meso scale catchments in Central Germany. Rode M, Thiel E, Franko U, Wenk G, Hesser F. Sci Total Environ; 2009 May 15; 407(11):3459-72. PubMed ID: 19261322 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]