These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


353 related items for PubMed ID: 17405375

  • 1. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F, Eklund JM, Hashtrudi-Zaad K.
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [Abstract] [Full Text] [Related]

  • 2. A Comparative Approach to Hand Force Estimation using Artificial Neural Networks.
    Mobasser F, Hashtrudi-Zaad K.
    Biomed Eng Comput Biol; 2012 Apr; 4():1-15. PubMed ID: 25288896
    [Abstract] [Full Text] [Related]

  • 3. Counteractive relationship between the interaction torque and muscle torque at the wrist is predestined in ball-throwing.
    Hirashima M, Ohgane K, Kudo K, Hase K, Ohtsuki T.
    J Neurophysiol; 2003 Sep; 90(3):1449-63. PubMed ID: 12966174
    [Abstract] [Full Text] [Related]

  • 4. Muscle activity-torque-velocity relations in human elbow extensor muscles.
    Uchiyama T, Akazawa K.
    Front Med Biol Eng; 1999 Sep; 9(4):305-13. PubMed ID: 10718668
    [Abstract] [Full Text] [Related]

  • 5. Prediction of joint moments using a neural network model of muscle activations from EMG signals.
    Wang L, Buchanan TS.
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):30-7. PubMed ID: 12173737
    [Abstract] [Full Text] [Related]

  • 6. Use of the fast orthogonal search method to estimate optimal joint angle for upper limb Hill-muscle models.
    Mountjoy K, Morin E, Hashtrudi-Zaad K.
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):790-8. PubMed ID: 19932992
    [Abstract] [Full Text] [Related]

  • 7. Effect of elbow joint angle on force-EMG relationships in human elbow flexor and extensor muscles.
    Doheny EP, Lowery MM, Fitzpatrick DP, O'Malley MJ.
    J Electromyogr Kinesiol; 2008 Oct; 18(5):760-70. PubMed ID: 17499516
    [Abstract] [Full Text] [Related]

  • 8. Surface myoelectric signal classification for prostheses control.
    Al-Assaf Y, Al-Nashash H.
    J Med Eng Technol; 2005 Oct; 29(5):203-7. PubMed ID: 16126579
    [Abstract] [Full Text] [Related]

  • 9. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK, Mak AF.
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [Abstract] [Full Text] [Related]

  • 10. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA, Perry J, Gitter AJ.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [Abstract] [Full Text] [Related]

  • 11. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces.
    Chan SS, Moran DW.
    J Neural Eng; 2006 Dec; 3(4):327-37. PubMed ID: 17124337
    [Abstract] [Full Text] [Related]

  • 12. Hand force estimation using Fast Orthogonal Search.
    Mikael Eklund J, Mobasser F, Hashtrudi-Zaad K.
    Conf Proc IEEE Eng Med Biol Soc; 2004 Dec; 2006():695-8. PubMed ID: 17271772
    [Abstract] [Full Text] [Related]

  • 13. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R, Sivanandan KS.
    J Back Musculoskelet Rehabil; 2017 Dec; 30(3):515-525. PubMed ID: 27858692
    [Abstract] [Full Text] [Related]

  • 14. Surface EMG force modeling with joint angle based calibration.
    Hashemi J, Morin E, Mousavi P, Hashtrudi-Zaad K.
    J Electromyogr Kinesiol; 2013 Apr; 23(2):416-24. PubMed ID: 23273763
    [Abstract] [Full Text] [Related]

  • 15. Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models.
    Clancy EA, Liu L, Liu P, Moyer DV.
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):205-12. PubMed ID: 21968709
    [Abstract] [Full Text] [Related]

  • 16. An EMG-driven model of the upper extremity and estimation of long head biceps force.
    Langenderfer J, LaScalza S, Mell A, Carpenter JE, Kuhn JE, Hughes RE.
    Comput Biol Med; 2005 Jan; 35(1):25-39. PubMed ID: 15567350
    [Abstract] [Full Text] [Related]

  • 17. Real-time upper limb motion estimation from surface electromyography and joint angular velocities using an artificial neural network for human-machine cooperation.
    Kwon S, Kim J.
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):522-30. PubMed ID: 21558060
    [Abstract] [Full Text] [Related]

  • 18. Real-time pinch force estimation by surface electromyography using an artificial neural network.
    Choi C, Kwon S, Park W, Lee HD, Kim J.
    Med Eng Phys; 2010 Jun; 32(5):429-36. PubMed ID: 20430679
    [Abstract] [Full Text] [Related]

  • 19. Muscle moment arm and normalized moment contributions as reference data for musculoskeletal elbow and wrist joint models.
    Ramsay JW, Hunter BV, Gonzalez RV.
    J Biomech; 2009 Mar 11; 42(4):463-73. PubMed ID: 19185304
    [Abstract] [Full Text] [Related]

  • 20. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH, Rozendaal LA, Meskers CG, Arwert HJ.
    Clin Biomech (Bristol); 2004 Oct 11; 19(8):790-800. PubMed ID: 15342151
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.