These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


297 related items for PubMed ID: 17406860

  • 21. Force regulation of ankle extensor muscle activity in freely walking cats.
    Donelan JM, McVea DA, Pearson KG.
    J Neurophysiol; 2009 Jan; 101(1):360-71. PubMed ID: 19019974
    [Abstract] [Full Text] [Related]

  • 22. Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies.
    Buford JA, Smith JL.
    J Neurophysiol; 1990 Sep; 64(3):756-66. PubMed ID: 2230922
    [Abstract] [Full Text] [Related]

  • 23. Recruitment of gastrocnemius muscles during the swing phase of stepping following partial denervation of knee flexor muscles in the cat.
    Tachibana A, McVea DA, Donelan JM, Pearson KG.
    Exp Brain Res; 2006 Mar; 169(4):449-60. PubMed ID: 16261338
    [Abstract] [Full Text] [Related]

  • 24. Short-term motor compensations to denervation of feline soleus and lateral gastrocnemius result in preservation of ankle mechanical output during locomotion.
    Prilutsky BI, Maas H, Bulgakova M, Hodson-Tole EF, Gregor RJ.
    Cells Tissues Organs; 2011 Mar; 193(5):310-24. PubMed ID: 21411965
    [Abstract] [Full Text] [Related]

  • 25. Adaptive changes in locomotor activity following botulinum toxin injection in ankle extensor muscles of cats.
    Misiaszek JE, Pearson KG.
    J Neurophysiol; 2002 Jan; 87(1):229-39. PubMed ID: 11784745
    [Abstract] [Full Text] [Related]

  • 26. Adaptive changes in motor activity associated with functional recovery following muscle denervation in walking cats.
    Pearson KG, Fouad K, Misiaszek JE.
    J Neurophysiol; 1999 Jul; 82(1):370-81. PubMed ID: 10400965
    [Abstract] [Full Text] [Related]

  • 27. Force-sharing between cat soleus and gastrocnemius muscles during walking: explanations based on electrical activity, properties, and kinematics.
    Prilutsky BI, Herzog W, Allinger TL.
    J Biomech; 1994 Oct; 27(10):1223-35. PubMed ID: 7962010
    [Abstract] [Full Text] [Related]

  • 28. Neuromechanical control of locomotion in the rat.
    Thota AK, Watson SC, Knapp E, Thompson B, Jung R.
    J Neurotrauma; 2005 Apr; 22(4):442-65. PubMed ID: 15853462
    [Abstract] [Full Text] [Related]

  • 29. The modulation of locomotor speed is maintained following partial denervation of ankle extensors in spinal cats.
    Harnie J, Côté-Sarrazin C, Hurteau MF, Desrochers E, Doelman A, Amhis N, Frigon A.
    J Neurophysiol; 2018 Sep 01; 120(3):1274-1285. PubMed ID: 29897865
    [Abstract] [Full Text] [Related]

  • 30. Plasticity of reflexes from the foot during locomotion after denervating ankle extensors in intact cats.
    Frigon A, Rossignol S.
    J Neurophysiol; 2007 Oct 01; 98(4):2122-32. PubMed ID: 17652411
    [Abstract] [Full Text] [Related]

  • 31. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats.
    Bouyer LJ, Rossignol S.
    J Neurophysiol; 2003 Dec 01; 90(6):3625-39. PubMed ID: 12944536
    [Abstract] [Full Text] [Related]

  • 32. Multi-functionality of the cat medical gastrocnemius during locomotion.
    Kaya M, Jinha A, Leonard TR, Herzog W.
    J Biomech; 2005 Jun 01; 38(6):1291-301. PubMed ID: 15863114
    [Abstract] [Full Text] [Related]

  • 33. Effect of slope and sciatic nerve injury on ankle muscle recruitment and hindlimb kinematics during walking in the rat.
    Sabatier MJ, To BN, Nicolini J, English AW.
    J Exp Biol; 2011 Mar 15; 214(Pt 6):1007-16. PubMed ID: 21346129
    [Abstract] [Full Text] [Related]

  • 34. Control of frontal plane motion of the hindlimbs in the unrestrained walking cat.
    Misiaszek JE.
    J Neurophysiol; 2006 Oct 15; 96(4):1816-28. PubMed ID: 16823027
    [Abstract] [Full Text] [Related]

  • 35. Factors determining segmental reflex action in normal and decerebrate cats.
    Sinkjaer T, Hoffer JA.
    J Neurophysiol; 1990 Nov 15; 64(5):1625-35. PubMed ID: 2283544
    [Abstract] [Full Text] [Related]

  • 36. Upslope treadmill exercise enhances motor axon regeneration but not functional recovery following peripheral nerve injury.
    Cannoy J, Crowley S, Jarratt A, Werts KL, Osborne K, Park S, English AW.
    J Neurophysiol; 2016 Sep 01; 116(3):1408-17. PubMed ID: 27466130
    [Abstract] [Full Text] [Related]

  • 37. A comparison analysis of hindlimb kinematics during overground and treadmill locomotion in rats.
    Pereira JE, Cabrita AM, Filipe VM, Bulas-Cruz J, Couto PA, Melo-Pinto P, Costa LM, Geuna S, Maurício AC, Varejão AS.
    Behav Brain Res; 2006 Sep 25; 172(2):212-8. PubMed ID: 16777243
    [Abstract] [Full Text] [Related]

  • 38. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N, Ekeberg O.
    Biol Cybern; 2008 Aug 25; 99(2):125-38. PubMed ID: 18648849
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Transfer of mechanical energy between ankle and knee joints by gastrocnemius and plantaris muscles during cat locomotion.
    Prilutsky BI, Herzog W, Leonard T.
    J Biomech; 1996 Apr 25; 29(4):391-403. PubMed ID: 8964769
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.