These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 17410338

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses.
    Visser D, van Zuylen GA, van Dam JC, Eman MR, Pröll A, Ras C, Wu L, van Gulik WM, Heijnen JJ.
    Biotechnol Bioeng; 2004 Oct 20; 88(2):157-67. PubMed ID: 15449293
    [Abstract] [Full Text] [Related]

  • 7. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S.
    Appl Microbiol Biotechnol; 2008 Dec 20; 81(4):743-53. PubMed ID: 18810428
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae.
    Cheraiti N, Sauvage FX, Salmon JM.
    Appl Microbiol Biotechnol; 2008 Jan 20; 77(5):1093-109. PubMed ID: 17938904
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J, Vemuri GN, Bao X, Olsson L.
    Appl Microbiol Biotechnol; 2009 Apr 20; 82(5):909-19. PubMed ID: 19221731
    [Abstract] [Full Text] [Related]

  • 14. Effects of T-2 toxin on ethanol production by Saccharomyces cerevisiae.
    Koshinsky HA, Cosby RH, Khachatourians GG.
    Biotechnol Appl Biochem; 1992 Dec 20; 16(3):275-86. PubMed ID: 1476665
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Correlation between acetaldehyde and ethanol resistance and expression of HSP genes in yeast strains isolated during the biological aging of sherry wines.
    Aranda A, Querol A, del Olmo Ml.
    Arch Microbiol; 2002 Apr 20; 177(4):304-12. PubMed ID: 11889484
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL, Henson MA.
    IET Syst Biol; 2009 May 20; 3(3):167-79. PubMed ID: 19449977
    [Abstract] [Full Text] [Related]

  • 20. Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae.
    Sánchez NS, Calahorra M, González-Hernández JC, Peña A.
    Yeast; 2006 Apr 15; 23(5):361-74. PubMed ID: 16598688
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.