These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 17410801

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The effect of ozone on the removal effectiveness of photocatalysis on indoor gaseous biogenic volatile organic compounds.
    Yu KP, Lee GW, Huang GH.
    J Air Waste Manag Assoc; 2010 Jul; 60(7):820-9. PubMed ID: 20681429
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.
    Hodgson AT, Destaillats H, Sullivan DP, Fisk WJ.
    Indoor Air; 2007 Aug; 17(4):305-16. PubMed ID: 17661927
    [Abstract] [Full Text] [Related]

  • 10. Removal of indoor α-pinene with a fiber optic illuminated honeycomb monolith photocatalytic reactor.
    Yu KP, Lee GW, Hung AJ.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 Aug; 49(10):1110-5. PubMed ID: 24844891
    [Abstract] [Full Text] [Related]

  • 11. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part I: Theoretical Considerations.
    Dumont É, Héquet V.
    Molecules; 2017 Mar 06; 22(3):. PubMed ID: 28272308
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air.
    Sharmin R, Ray MB.
    J Air Waste Manag Assoc; 2012 Sep 06; 62(9):1032-9. PubMed ID: 23019817
    [Abstract] [Full Text] [Related]

  • 14. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results.
    Héquet V, Batault F, Raillard C, Thévenet F, Le Coq L, Dumont É.
    Molecules; 2017 Mar 06; 22(3):. PubMed ID: 28272309
    [Abstract] [Full Text] [Related]

  • 15. Comparison of different TiO2 photocatalysts for the gas phase oxidation of volatile organic compounds.
    Raillard C, Héquet V, Le Cloirec P, Legrand J.
    Water Sci Technol; 2004 Mar 06; 50(4):241-50. PubMed ID: 15484767
    [Abstract] [Full Text] [Related]

  • 16. Kinetics of photocatalytic VOCs abatement in a standardized reactor.
    Doucet N, Bocquillon F, Zahraa O, Bouchy M.
    Chemosphere; 2006 Nov 06; 65(7):1188-96. PubMed ID: 16725178
    [Abstract] [Full Text] [Related]

  • 17. Ultraviolet photocatalytic oxidation technology for indoor volatile organic compound removal: A critical review with particular focus on byproduct formation and modeling.
    Wu J, Alipouri Y, Luo H, Zhong L.
    J Hazard Mater; 2022 Jan 05; 421():126766. PubMed ID: 34396962
    [Abstract] [Full Text] [Related]

  • 18. Photochemistry of the indoor air pollutant acetone on Degussa P25 TiO2 studied by chemical ionization mass spectrometry.
    Schmidt CM, Buchbinder AM, Weitz E, Geiger FM.
    J Phys Chem A; 2007 Dec 20; 111(50):13023-31. PubMed ID: 18031025
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.