These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


549 related items for PubMed ID: 17412633

  • 21. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA, Talebi Z, Cheraghali D, Shahbani-Zahiri A, Norouzi M.
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [Abstract] [Full Text] [Related]

  • 22. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow.
    Glor FP, Long Q, Hughes AD, Augst AD, Ariff B, Thom SA, Verdonck PR, Xu XY.
    Ann Biomed Eng; 2003 Feb; 31(2):142-51. PubMed ID: 12627821
    [Abstract] [Full Text] [Related]

  • 23. Calculation of wall shear stress in left coronary artery bifurcation for pulsatile flow using two-dimensional computational fluid dynamics.
    Smith S, Austin S, Wesson GD, Moore CA.
    Conf Proc IEEE Eng Med Biol Soc; 2006 Feb; 2006():871-4. PubMed ID: 17945604
    [Abstract] [Full Text] [Related]

  • 24. Influence of non-Newtonian behavior of blood on flow in an elastic artery model.
    Dutta A, Tarbell JM.
    J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082
    [Abstract] [Full Text] [Related]

  • 25. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J, Lu XY.
    J Biomech; 2006 Feb; 39(5):818-32. PubMed ID: 16488221
    [Abstract] [Full Text] [Related]

  • 26. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.
    Benard N, Perrault R, Coisne D.
    Ann Biomed Eng; 2006 Aug; 34(8):1259-71. PubMed ID: 16799830
    [Abstract] [Full Text] [Related]

  • 27. Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis.
    O'Callaghan S, Walsh M, McGloughlin T.
    Med Eng Phys; 2006 Jan; 28(1):70-4. PubMed ID: 15905113
    [Abstract] [Full Text] [Related]

  • 28. Wall shear stress gradient topography in the normal left coronary arterial tree: possible implications for atherogenesis.
    Farmakis TM, Soulis JV, Giannoglou GD, Zioupos GJ, Louridas GE.
    Curr Med Res Opin; 2004 May; 20(5):587-96. PubMed ID: 15140324
    [Abstract] [Full Text] [Related]

  • 29. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses.
    Zhang C, Xie S, Li S, Pu F, Deng X, Fan Y, Li D.
    J Biomech; 2012 Jan 03; 45(1):83-9. PubMed ID: 22079384
    [Abstract] [Full Text] [Related]

  • 30. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model.
    Perktold K, Resch M, Florian H.
    J Biomech Eng; 1991 Nov 03; 113(4):464-75. PubMed ID: 1762445
    [Abstract] [Full Text] [Related]

  • 31. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation.
    Younis HF, Kaazempur-Mofrad MR, Chan RC, Isasi AG, Hinton DP, Chau AH, Kim LA, Kamm RD.
    Biomech Model Mechanobiol; 2004 Sep 03; 3(1):17-32. PubMed ID: 15300454
    [Abstract] [Full Text] [Related]

  • 32. The relative effects of arterial curvature and lumen diameter on wall shear stress distributions in human right coronary arteries.
    Johnston BM, Johnston PR.
    Phys Med Biol; 2007 May 07; 52(9):2531-44. PubMed ID: 17440250
    [Abstract] [Full Text] [Related]

  • 33. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow.
    Schirmer CM, Malek AM.
    Neurosurgery; 2007 Oct 07; 61(4):853-63; discussion 863-4. PubMed ID: 17986948
    [Abstract] [Full Text] [Related]

  • 34. Unsteady stenosis flow prediction: a comparative study of non-Newtonian models with operator splitting scheme.
    Siauw WL, Ng EY, Mazumdar J.
    Med Eng Phys; 2000 May 07; 22(4):265-77. PubMed ID: 11018458
    [Abstract] [Full Text] [Related]

  • 35. LES of non-Newtonian physiological blood flow in a model of arterial stenosis.
    Molla MM, Paul MC.
    Med Eng Phys; 2012 Oct 07; 34(8):1079-87. PubMed ID: 22153320
    [Abstract] [Full Text] [Related]

  • 36. Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress.
    Chen HY, Sinha AK, Choy JS, Zheng H, Sturek M, Bigelow B, Bhatt DL, Kassab GS.
    Am J Physiol Heart Circ Physiol; 2011 Dec 07; 301(6):H2254-63. PubMed ID: 21926337
    [Abstract] [Full Text] [Related]

  • 37. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F, Ghista DN.
    Med Eng Phys; 2012 Sep 07; 34(7):860-72. PubMed ID: 22032834
    [Abstract] [Full Text] [Related]

  • 38. Comparative study of Newtonian and non-Newtonian simulations of drug transport in a model drug-eluting stent.
    Wang Z, Sun A, Fan Y, Deng X.
    Biorheology; 2012 Sep 07; 49(4):249-59. PubMed ID: 22836079
    [Abstract] [Full Text] [Related]

  • 39. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K, Rappitsch G.
    J Biomech; 1995 Jul 07; 28(7):845-56. PubMed ID: 7657682
    [Abstract] [Full Text] [Related]

  • 40. Flow patterns in three-dimensional porcine epicardial coronary arterial tree.
    Huo Y, Wischgoll T, Kassab GS.
    Am J Physiol Heart Circ Physiol; 2007 Nov 07; 293(5):H2959-70. PubMed ID: 17827262
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 28.