These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


270 related items for PubMed ID: 17416401

  • 41. Removal of dissolved estrogen in sewage effluents by β-cyclodextrin polymer.
    Oishi K, Moriuchi A.
    Sci Total Environ; 2010 Dec 01; 409(1):112-5. PubMed ID: 20980045
    [Abstract] [Full Text] [Related]

  • 42. Anaerobic digestibility of estrogens in wastewater sludge: effect of ultrasonic pretreatment.
    Chawla C, Sarkar S, Ali S, Rehmann L, Nakhla G, Ray MB.
    J Environ Manage; 2014 Dec 01; 145():307-13. PubMed ID: 25098232
    [Abstract] [Full Text] [Related]

  • 43. Removal of steroid estrogens in carbonaceous and nitrifying activated sludge processes.
    McAdam EJ, Bagnall JP, Koh YK, Chiu TY, Pollard S, Scrimshaw MD, Lester JN, Cartmell E.
    Chemosphere; 2010 Sep 01; 81(1):1-6. PubMed ID: 20719356
    [Abstract] [Full Text] [Related]

  • 44. Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea.
    Shi J, Fujisawa S, Nakai S, Hosomi M.
    Water Res; 2004 May 01; 38(9):2322-9. PubMed ID: 15142793
    [Abstract] [Full Text] [Related]

  • 45. Effects of bacterial activity on estrogen removal in nitrifying activated sludge.
    Ren YX, Nakano K, Nomura M, Chiba N, Nishimura O.
    Water Res; 2007 Jul 01; 41(14):3089-96. PubMed ID: 17544475
    [Abstract] [Full Text] [Related]

  • 46. Fate and levels of steroid oestrogens and androgens in waste stabilisation ponds: quantification by liquid chromatography-tandem mass spectrometry.
    Coleman HM, Le-Minh N, Khan SJ, Short MD, Chernicharo C, Stuetz RM.
    Water Sci Technol; 2010 Jul 01; 61(3):677-84. PubMed ID: 20150704
    [Abstract] [Full Text] [Related]

  • 47. Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices.
    Johnson AC, Aerni HR, Gerritsen A, Gibert M, Giger W, Hylland K, Jürgens M, Nakari T, Pickering A, Suter MJ, Svenson A, Wettstein FE.
    Water Res; 2005 Jan 01; 39(1):47-58. PubMed ID: 15607163
    [Abstract] [Full Text] [Related]

  • 48. Occurrence, fate, and biodegradation of estrogens in sewage and manure.
    Combalbert S, Hernandez-Raquet G.
    Appl Microbiol Biotechnol; 2010 May 01; 86(6):1671-92. PubMed ID: 20354692
    [Abstract] [Full Text] [Related]

  • 49. Removal and fate of estrogens in an anaerobic-anoxic-oxic activated sludge system.
    Li YM, Zeng QL, Yang SJ.
    Water Sci Technol; 2011 May 01; 63(1):51-6. PubMed ID: 21245553
    [Abstract] [Full Text] [Related]

  • 50. Chemical-toxicological insights and process comparison for estrogenic activity mitigation in municipal wastewater treatment plants.
    Zhou J, He X, Zhang Z, Wu G, Liu P, Wang D, Shi P, Zhang XX.
    Water Res; 2024 Apr 01; 253():121304. PubMed ID: 38364463
    [Abstract] [Full Text] [Related]

  • 51. Natural and synthetic hormone removal using the horseradish peroxidase enzyme: temperature and pH effects.
    Auriol M, Filali-Meknassi Y, Adams CD, Tyagi RD.
    Water Res; 2006 Aug 01; 40(15):2847-56. PubMed ID: 16849026
    [Abstract] [Full Text] [Related]

  • 52. A survey of endocrine disrupting chemicals (EDCs) in municipal sewage and animal waste effluents in the Waikato region of New Zealand.
    Sarmah AK, Northcott GL, Leusch FD, Tremblay LA.
    Sci Total Environ; 2006 Feb 15; 355(1-3):135-44. PubMed ID: 16442435
    [Abstract] [Full Text] [Related]

  • 53. Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants.
    Braga O, Smythe GA, Schäfer AI, Feitz AJ.
    Environ Sci Technol; 2005 May 01; 39(9):3351-8. PubMed ID: 15926589
    [Abstract] [Full Text] [Related]

  • 54. The effects of hydraulic retention time and sludge retention time on the fate of di-(2-ethylhexyl) phthalate in a laboratory-scale anaerobic-anoxic-aerobic activated sludge system.
    Huang M, Li Y, Gu G.
    Bioresour Technol; 2008 Nov 01; 99(17):8107-11. PubMed ID: 18440226
    [Abstract] [Full Text] [Related]

  • 55. A pilot scale comparison of advanced oxidation processes for estrogenic hormone removal from municipal wastewater effluent.
    Pešoutová R, Stříteský L, Hlavínek P.
    Water Sci Technol; 2014 Nov 01; 70(1):70-5. PubMed ID: 25026581
    [Abstract] [Full Text] [Related]

  • 56. Enhanced estrogen removal in activated sludge processes through the optimization of the hydraulic flow pattern.
    Coello-Garcia T, Curtis TP, Mrozik W, Davenport RJ.
    Water Res; 2019 Nov 01; 164():114905. PubMed ID: 31394465
    [Abstract] [Full Text] [Related]

  • 57. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry.
    Chen CY, Wen TY, Wang GS, Cheng HW, Lin YH, Lien GW.
    Sci Total Environ; 2007 Jun 01; 378(3):352-65. PubMed ID: 17428520
    [Abstract] [Full Text] [Related]

  • 58. Determination of natural and synthetic estrogens and their conjugates in sewage sludge by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry.
    Nieto A, Borrull F, Pocurull E, Marcé RM.
    J Chromatogr A; 2008 Dec 12; 1213(2):224-30. PubMed ID: 18976768
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccase from Trametes versicolor.
    Auriol M, Filali-Meknassi Y, Adams CD, Tyagi RD, Noguerol TN, Piña B.
    Chemosphere; 2008 Jan 12; 70(3):445-52. PubMed ID: 17897698
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.