These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 17428073

  • 1. Reversible condensation of DNA using a redox-active surfactant.
    Hays ME, Jewell CM, Lynn DM, Abbott NL.
    Langmuir; 2007 May 08; 23(10):5609-14. PubMed ID: 17428073
    [Abstract] [Full Text] [Related]

  • 2. Electrochemical control of the interactions of polymers and redox-active surfactants.
    Hays ME, Abbott NL.
    Langmuir; 2005 Dec 06; 21(25):12007-15. PubMed ID: 16316146
    [Abstract] [Full Text] [Related]

  • 3. Methods for generation of spatial gradients in concentration of monomeric surfactants and micelles in microfluidic systems.
    Liu X, Graham MD, Abbott NL.
    Langmuir; 2007 Sep 11; 23(19):9578-85. PubMed ID: 17705408
    [Abstract] [Full Text] [Related]

  • 4. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X, Abbott NL.
    Anal Chem; 2009 Jan 15; 81(2):772-81. PubMed ID: 19086794
    [Abstract] [Full Text] [Related]

  • 5. Demulsification of Redox-Active Emulsions by Chemical Oxidation.
    Takahashi Y, Koizumi N, Kondo Y.
    Langmuir; 2016 Aug 02; 32(30):7556-63. PubMed ID: 27402350
    [Abstract] [Full Text] [Related]

  • 6. Ferrocene-containing cationic lipids for the delivery of DNA: oxidation state determines transfection activity.
    Jewell CM, Hays ME, Kondo Y, Abbott NL, Lynn DM.
    J Control Release; 2006 May 01; 112(1):129-38. PubMed ID: 16529838
    [Abstract] [Full Text] [Related]

  • 7. Voltage-responsive reversible self-assembly and controlled drug release of ferrocene-containing polymeric superamphiphiles.
    Chang X, Cheng Z, Ren B, Dong R, Peng J, Fu S, Tong Z.
    Soft Matter; 2015 Oct 14; 11(38):7494-501. PubMed ID: 26268718
    [Abstract] [Full Text] [Related]

  • 8. Influence of self-assembling redox mediators on charge transfer at hydrophobic electrodes.
    Smith TJ, Wang C, Abbott NL.
    Langmuir; 2015 Oct 06; 31(39):10638-48. PubMed ID: 26305703
    [Abstract] [Full Text] [Related]

  • 9. Redox-triggered mixing and demixing of surfactants within assemblies formed in solution and at surfaces.
    Smith TJ, Wang C, Abbott NL.
    J Colloid Interface Sci; 2017 Sep 15; 502():122-133. PubMed ID: 28478219
    [Abstract] [Full Text] [Related]

  • 10. Control of viscoelasticity using redox reaction.
    Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M.
    J Am Chem Soc; 2004 Oct 06; 126(39):12282-3. PubMed ID: 15453758
    [Abstract] [Full Text] [Related]

  • 11. Synthesis, crystal structure and luminescence properties of one inorganic-organic hybrid compound [FTMA]2[Co(NCS)4] (FTMA = ferrocenylmethyltrimethylammonium cation).
    Bai Y, Zhang GQ, Dang DB, Ma PT, Niu JY.
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug 06; 79(3):570-3. PubMed ID: 21530374
    [Abstract] [Full Text] [Related]

  • 12. Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.
    Liu X, Abbott NL.
    Anal Chem; 2011 Apr 15; 83(8):3033-41. PubMed ID: 21446653
    [Abstract] [Full Text] [Related]

  • 13. Interaction between DNA and trimethyl-ammonium bromides with different alkyl chain lengths.
    Cheng C, Ran SY.
    ScientificWorldJournal; 2014 Apr 15; 2014():863049. PubMed ID: 24574926
    [Abstract] [Full Text] [Related]

  • 14. Principles for microscale separations based on redox-active surfactants and electrochemical methods.
    Rosslee CA, Abbott NL.
    Anal Chem; 2001 Oct 15; 73(20):4808-14. PubMed ID: 11681455
    [Abstract] [Full Text] [Related]

  • 15. Surface activity and redox behavior of a non-ionic surfactant containing a phenothiazine group.
    Susan MA, Ishibashi A, Takeoka Y, Watanabe M.
    Colloids Surf B Biointerfaces; 2004 Nov 15; 38(3-4):167-73. PubMed ID: 15542320
    [Abstract] [Full Text] [Related]

  • 16. Biophysical characterization of complexation of DNA with oppositely charged Gemini surfactant 12-3-12.
    Zhao X, Shang Y, Hu J, Liu H, Hu Y.
    Biophys Chem; 2008 Dec 15; 138(3):144-9. PubMed ID: 18842331
    [Abstract] [Full Text] [Related]

  • 17. Ternary complex formation in aqueous solution between a beta-cyclodextrin polymer, a cationic surfactant and DNA.
    Galant C, Amiel C, Auvray L.
    Macromol Biosci; 2005 Nov 04; 5(11):1057-65. PubMed ID: 16245271
    [Abstract] [Full Text] [Related]

  • 18. Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene.
    Hubbard FP, Abbott NL.
    Langmuir; 2007 Apr 24; 23(9):4819-29. PubMed ID: 17381141
    [Abstract] [Full Text] [Related]

  • 19. Control of dual stimuli-responsive vesicle formation in aqueous solutions of single-tailed ferrocenyl surfactant by varying pH and redox conditions.
    Hata S, Takahashi H, Takahashi Y, Kondo Y.
    J Oleo Sci; 2014 Apr 24; 63(3):239-48. PubMed ID: 24492378
    [Abstract] [Full Text] [Related]

  • 20. Redox-Induced Backbiting of Surface-Tethered Alkylsulfonate Amphiphiles: Reversible Switching of Surface Wettability and Adherence.
    Dos Ramos L, de Beer S, Hempenius MA, Vancso GJ.
    Langmuir; 2015 Jun 16; 31(23):6343-50. PubMed ID: 25989156
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.