These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 17428197
1. Scythe regulates apoptosis through modulating ubiquitin-mediated proteolysis of the Xenopus elongation factor XEF1AO. Minami R, Shimada M, Yokosawa H, Kawahara H. Biochem J; 2007 Aug 01; 405(3):495-501. PubMed ID: 17428197 [Abstract] [Full Text] [Related]
2. Scythe: a novel reaper-binding apoptotic regulator. Thress K, Henzel W, Shillinglaw W, Kornbluth S. EMBO J; 1998 Nov 02; 17(21):6135-43. PubMed ID: 9799223 [Abstract] [Full Text] [Related]
3. Unique proteasome subunit Xrpn10c is a specific receptor for the antiapoptotic ubiquitin-like protein Scythe. Kikukawa Y, Minami R, Shimada M, Kobayashi M, Tanaka K, Yokosawa H, Kawahara H. FEBS J; 2005 Dec 02; 272(24):6373-86. PubMed ID: 16336274 [Abstract] [Full Text] [Related]
4. Reaper-induced dissociation of a Scythe-sequestered cytochrome c-releasing activity. Thress K, Evans EK, Kornbluth S. EMBO J; 1999 Oct 15; 18(20):5486-93. PubMed ID: 10523293 [Abstract] [Full Text] [Related]
5. Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper. Thress K, Song J, Morimoto RI, Kornbluth S. EMBO J; 2001 Mar 01; 20(5):1033-41. PubMed ID: 11230127 [Abstract] [Full Text] [Related]
6. The reaper-binding protein scythe modulates apoptosis and proliferation during mammalian development. Desmots F, Russell HR, Lee Y, Boyd K, McKinnon PJ. Mol Cell Biol; 2005 Dec 01; 25(23):10329-37. PubMed ID: 16287848 [Abstract] [Full Text] [Related]
7. A conserved island of BAG6/Scythe is related to ubiquitin domains and participates in short hydrophobicity recognition. Tanaka H, Takahashi T, Xie Y, Minami R, Yanagi Y, Hayashishita M, Suzuki R, Yokota N, Shimada M, Mizushima T, Kuwabara N, Kato R, Kawahara H. FEBS J; 2016 Feb 01; 283(4):662-77. PubMed ID: 26663859 [Abstract] [Full Text] [Related]
8. Apoptosis-inhibiting activities of BIR family proteins in Xenopus egg extracts. Tsuchiya Y, Murai S, Yamashita S. FEBS J; 2005 May 01; 272(9):2237-50. PubMed ID: 15853809 [Abstract] [Full Text] [Related]
9. Scythe regulates apoptosis-inducing factor stability during endoplasmic reticulum stress-induced apoptosis. Desmots F, Russell HR, Michel D, McKinnon PJ. J Biol Chem; 2008 Feb 08; 283(6):3264-3271. PubMed ID: 18056262 [Abstract] [Full Text] [Related]
10. Inhibition of translation and induction of apoptosis by Bunyaviral nonstructural proteins bearing sequence similarity to reaper. Colón-Ramos DA, Irusta PM, Gan EC, Olson MR, Song J, Morimoto RI, Elliott RM, Lombard M, Hollingsworth R, Hardwick JM, Smith GK, Kornbluth S. Mol Biol Cell; 2003 Oct 08; 14(10):4162-72. PubMed ID: 14517326 [Abstract] [Full Text] [Related]
11. cnrip1 is a regulator of eye and neural development in Xenopus laevis. Zheng X, Suzuki T, Takahashi C, Nishida E, Kusakabe M. Genes Cells; 2015 Apr 08; 20(4):324-39. PubMed ID: 25652037 [Abstract] [Full Text] [Related]
12. Human Scythe contains a functional nuclear localization sequence and remains in the nucleus during staurosporine-induced apoptosis. Manchen ST, Hubberstey AV. Biochem Biophys Res Commun; 2001 Oct 12; 287(5):1075-82. PubMed ID: 11587531 [Abstract] [Full Text] [Related]
13. Regulated interaction between polypeptide chain elongation factor-1 complex with the 26S proteasome during Xenopus oocyte maturation. Tokumoto T, Kondo A, Miwa J, Horiguchi R, Tokumoto M, Nagahama Y, Okida N, Ishikawa K. BMC Biochem; 2003 Jul 16; 4():6. PubMed ID: 12864926 [Abstract] [Full Text] [Related]
14. The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis. Kiem LM, Dietmann P, Linnemann A, Schmeisser MJ, Kühl SJ. Dev Biol; 2017 Mar 01; 423(1):66-76. PubMed ID: 28104388 [Abstract] [Full Text] [Related]
15. Characterization of the 38 kDa protein lacking in gastrula-arrested mutant Xenopus embryos. Tanaka TS, Nishiumi F, Komiya T, Ikenishi K. Int J Dev Biol; 2010 Mar 01; 54(8-9):1347-53. PubMed ID: 20712004 [Abstract] [Full Text] [Related]
16. Involvement of an inner nuclear membrane protein, Nemp1, in Xenopus neural development through an interaction with the chromatin protein BAF. Mamada H, Takahashi N, Taira M. Dev Biol; 2009 Mar 15; 327(2):497-507. PubMed ID: 19167377 [Abstract] [Full Text] [Related]
17. Frodo interacts with Dishevelled to transduce Wnt signals. Gloy J, Hikasa H, Sokol SY. Nat Cell Biol; 2002 May 15; 4(5):351-7. PubMed ID: 11941372 [Abstract] [Full Text] [Related]
18. Multiple functions of FADD in apoptosis, NF-κB-related signaling, and heart development in Xenopus embryos. Sakamaki K, Takagi C, Kitayama A, Kurata T, Yamamoto TS, Chiba K, Kominami K, Jung SK, Okawa K, Nozaki M, Kubota HY, Ueno N. Genes Cells; 2012 Nov 15; 17(11):875-96. PubMed ID: 23025414 [Abstract] [Full Text] [Related]
19. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development. Pfirrmann T, Villavicencio-Lorini P, Subudhi AK, Menssen R, Wolf DH, Hollemann T. PLoS One; 2015 Nov 15; 10(3):e0120342. PubMed ID: 25793641 [Abstract] [Full Text] [Related]
20. Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Winnefeld M, Grewenig A, Schnölzer M, Spring H, Knoch TA, Gan EC, Rommelaere J, Cziepluch C. Exp Cell Res; 2006 Aug 01; 312(13):2500-14. PubMed ID: 16777091 [Abstract] [Full Text] [Related] Page: [Next] [New Search]